990 resultados para Automatic identification
Resumo:
This article describes the integration of the LSD (Logic for Structure Determination) and SISTEMAT expert systems that were both designed for the computer-assisted structure elucidation of small organic molecules. A first step has been achieved towards the linking of the SISTEMAT database with the LSD structure generator. The skeletal descriptions found by the SISTEMAT programs are now easily transferred to LSD as substructural constraints. Examples of the synergy between these expert systems are given for recently reported natural products.
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).
Resumo:
Crotamine is one of four major components of the venom of the South American rattlesnake Crotalus durissus terrificus. Similar to its counterparts in the family of the myotoxins, it induces myonecrosis of skeletal muscle cells. This paper describes a new NMR structure determination of crotamine in aqueous solution at pH 5.8 and 20 degrees C, using standard homonuclear (1)H NMR spectroscopy at 900 MHz and the automated structure calculation software ATNOS/CANDID/DYANA. The automatic NOESY spectral analysis included the identification of a most likely combination of the six cysteines into three disulfide bonds, i.e. Cys4-Cys36, Cys11-Cys30 and Cys18-Cys37; thereby a generally applicable new computational protocol is introduced to determine unknown disulfide bond connectivities in globular proteins. A previous NMR structure determination was thus confirmed and the structure refined. Crotamine contains an alpha-helix with residues 1-7 and a two-stranded anti-parallel beta-sheet with residues 9-13 and 34-38 as the only regular secondary structures. These are connected with each other and the remainder of the polypeptide chain by the three disulfide bonds, which also form part of a central hydrophobic core. A single conformation was observed, with Pro13 and Pro21 in the trans and Pro20 in the cis-form. The global fold and the cysteine-pairing pattern of crotamine are similar to the beta-defensin fold, although the two proteins have low sequence homology, and display different biological activities. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solved problem is a common mistake. The most popular and extensively used methods, the minutiae-based, do not perform well on poor-quality images and when just a small area of overlap between the template and the query images exists. The use of multibiometrics is considered one of the keys to overcome the weakness and improve the accuracy of biometrics systems. This paper presents the fusion of a minutiae-based and a ridge-based fingerprint recognition method at rank, decision and score level. The fusion techniques implemented leaded to a reduction of the Equal Error Rate by 31.78% (from 4.09% to 2.79%) and a decreasing of 6 positions in the rank to reach a Correct Retrieval (from rank 8 to 2) when assessed in the FVC2002-DB1A database. © 2008 IEEE.
Resumo:
Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.
Resumo:
Artificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.
Resumo:
The pathogens manifestation in plantations are the largest cause of damage in several cultivars, which may cause increase of prices and loss of crop quality. This paper presents a method for automatic classification of cotton diseases through feature extraction of leaf symptoms from digital images. Wavelet transform energy has been used for feature extraction while Support Vector Machine has been used for classification. Five situations have been diagnosed, namely: Healthy crop, Ramularia disease, Bacterial Blight, Ascochyta Blight, and unspecified disease. © 2012 Taylor & Francis Group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.
Resumo:
Cardiac morphogenesis is a complex process governed by evolutionarily conserved transcription factors and signaling molecules. The Drosophila cardiac tube is linear, made of 52 pairs of cardiomyocytes (CMs), which express specific transcription factor genes that have human homologues implicated in Congenital Heart Diseases (CHDs) (NKX2-5, GATA4 and TBX5). The Drosophila cardiac tube is linear and composed of a rostral portion named aorta and a caudal one called heart, distinguished by morphological and functional differences controlled by Hox genes, key regulators of axial patterning. Overexpression and inactivation of the Hox gene abdominal-A (abd-A), which is expressed exclusively in the heart, revealed that abd-A controls heart identity. The aim of our work is to isolate the heart-specific cisregulatory sequences of abd-A direct target genes, the realizator genes granting heart identity. In each segment of the heart, four pairs of cardiomyocytes (CMs) express tinman (tin), homologous to NKX2-5, and acquire strong contractile and automatic rhythmic activities. By tyramide amplified FISH, we found that seven genes, encoding ion channels, pumps or transporters, are specifically expressed in the Tin-CMs of the heart. We initially used online available tools to identify their heart-specific cisregutatory modules by looking for Conserved Non-coding Sequences containing clusters of binding sites for various cardiac transcription factors, including Hox proteins. Based on these data we generated several reporter gene constructs and transgenic embryos, but none of them showed reporter gene expression in the heart. In order to identify additional abd-A target genes, we performed microarray experiments comparing the transcriptomes of aorta versus heart and identified 144 genes overexpressed in the heart. In order to find the heart-specific cis-regulatory regions of these target genes we developed a new bioinformatic approach where prediction is based on pattern matching and ordered statistics. We first retrieved Conserved Noncoding Sequences from the alignment between the D.melanogaster and D.pseudobscura genomes. We scored for combinations of conserved occurrences of ABD-A, ABD-B, TIN, PNR, dMEF2, MADS box, T-box and E-box sites and we ranked these results based on two independent strategies. On one hand we ranked the putative cis-regulatory sequences according to best scored ABD-A biding sites, on the other hand we scored according to conservation of binding sites. We integrated and ranked again the two lists obtained independently to produce a final rank. We generated nGFP reporter construct flies for in vivo validation. We identified three 1kblong heart-specific enhancers. By in vivo and in vitro experiments we are determining whether they are direct abd-A targets, demonstrating the role of a Hox gene in the realization of heart identity. The identified abd-A direct target genes may be targets also of the NKX2-5, GATA4 and/or TBX5 homologues tin, pannier and Doc genes, respectively. The identification of sequences coregulated by a Hox protein and the homologues of transcription factors causing CHDs, will provide a mean to test whether these factors function as Hox cofactors granting cardiac specificity to Hox proteins, increasing our knowledge on the molecular mechanisms underlying CHDs. Finally, it may be investigated whether these Hox targets are involved in CHDs.
Resumo:
[EN]Different researches suggest that inner facial features are not the only discriminative features for tasks such as person identification or gender classification. Indeed, they have shown an influence of features which are part of the local face context, such as hair, on these tasks. However, object-centered approaches which ignore local context dominate the research in computational vision based facial analysis. In this paper, we performed an analysis to study which areas and which resolutions are diagnostic for the gender classification problem. We first demonstrate the importance of contextual features in human observers for gender classification using a psychophysical ”bubbles” technique.
Resumo:
The identification of people by measuring some traits of individual anatomy or physiology has led to a specific research area called biometric recognition. This thesis is focused on improving fingerprint recognition systems considering three important problems: fingerprint enhancement, fingerprint orientation extraction and automatic evaluation of fingerprint algorithms. An effective extraction of salient fingerprint features depends on the quality of the input fingerprint. If the fingerprint is very noisy, we are not able to detect a reliable set of features. A new fingerprint enhancement method, which is both iterative and contextual, is proposed. This approach detects high-quality regions in fingerprints, selectively applies contextual filtering and iteratively expands like wildfire toward low-quality ones. A precise estimation of the orientation field would greatly simplify the estimation of other fingerprint features (singular points, minutiae) and improve the performance of a fingerprint recognition system. The fingerprint orientation extraction is improved following two directions. First, after the introduction of a new taxonomy of fingerprint orientation extraction methods, several variants of baseline methods are implemented and, pointing out the role of pre- and post- processing, we show how to improve the extraction. Second, the introduction of a new hybrid orientation extraction method, which follows an adaptive scheme, allows to improve significantly the orientation extraction in noisy fingerprints. Scientific papers typically propose recognition systems that integrate many modules and therefore an automatic evaluation of fingerprint algorithms is needed to isolate the contributions that determine an actual progress in the state-of-the-art. The lack of a publicly available framework to compare fingerprint orientation extraction algorithms, motivates the introduction of a new benchmark area called FOE (including fingerprints and manually-marked orientation ground-truth) along with fingerprint matching benchmarks in the FVC-onGoing framework. The success of such framework is discussed by providing relevant statistics: more than 1450 algorithms submitted and two international competitions.
Resumo:
Bite mark analysis offers the opportunity to identify the biter based on the individual characteristics of the dentitions. Normally, the main focus is on analysing bite mark injuries on human bodies, but also, bite marks in food may play an important role in the forensic investigation of a crime. This study presents a comparison of simulated bite marks in different kinds of food with the dentitions of the presumed biter. Bite marks were produced by six adults in slices of buttered bread, apples, different kinds of Swiss chocolate and Swiss cheese. The time-lapse influence of the bite mark in food, under room temperature conditions, was also examined. For the documentation of the bite marks and the dentitions of the biters, 3D optical surface scanning technology was used. The comparison was performed using two different software packages: the ATOS modelling and analysing software and the 3D studio max animation software. The ATOS software enables an automatic computation of the deviation between the two meshes. In the present study, the bite marks and the dentitions were compared, as well as the meshes of each bite mark which were recorded in the different stages of time lapse. In the 3D studio max software, the act of biting was animated to compare the dentitions with the bite mark. The examined food recorded the individual characteristics of the dentitions very well. In all cases, the biter could be identified, and the dentitions of the other presumed biters could be excluded. The influence of the time lapse on the food depends on the kind of food and is shown on the diagrams. However, the identification of the biter could still be performed after a period of time, based on the recorded individual characteristics of the dentitions.
Resumo:
In functional magnetic resonance imaging (fMRI) coherent oscillations of the blood oxygen level-dependent (BOLD) signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting-state networks (RSN). Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA) and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting-state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82, and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting-state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting-state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.
Resumo:
One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing