970 resultados para Automatic Peak Detection
Resumo:
The current level of demand by customers in the electronics industry requires the production of parts with an extremely high level of reliability and quality to ensure complete confidence on the end customer. Automatic Optical Inspection (AOI) machines have an important role in the monitoring and detection of errors during the manufacturing process for printed circuit boards. These machines present images of products with probable assembly mistakes to an operator and him decide whether the product has a real defect or if in turn this was an automated false detection. Operator training is an important aspect for obtaining a lower rate of evaluation failure by the operator and consequently a lower rate of actual defects that slip through to the following processes. The Gage R&R methodology for attributes is part of a Six Sigma strategy to examine the repeatability and reproducibility of an evaluation system, thus giving important feedback on the suitability of each operator in classifying defects. This methodology was already applied in several industry sectors and services at different processes, with excellent results in the evaluation of subjective parameters. An application for training operators of AOI machines was developed, in order to be able to check their fitness and improve future evaluation performance. This application will provide a better understanding of the specific training needs for each operator, and also to accompany the evolution of the training program for new components which in turn present additional new difficulties for the operator evaluation. The use of this application will contribute to reduce the number of defects misclassified by the operators that are passed on to the following steps in the productive process. This defect reduction will also contribute to the continuous improvement of the operator evaluation performance, which is seen as a quality management goal.
Resumo:
An electrochemical method is proposed for the determination of maltol in food. Microwave-assisted extraction procedures were developed to assist sample pre-treating steps. Experiments carried out in cyclic voltammetry showed an irreversible and adsorption controlled reduction of maltol. A cathodic peak was observed at -1.0 V for a Hanging Mercury Drop Electrode versus an AgCl/Ag (in saturated KCl), and the peak potential was pH independent. Square wave voltammetric procedures were selected to plot calibration curves. These procedures were carried out with the optimum conditions: pH 6.5; frequency 50 Hz; deposition potential 0.6 V; and deposition time 10 s. A linear behaviour was observed within 5.0 × 10-8 and 3.5 × 10-7 M. The proposed method was applied to the analysis of cakes, and results were compared with those obtained by an independent method. The voltammetric procedure was proven suitable for the analysis of cakes and provided environmental and economical advantages, including reduced toxicity and volume of effluents and decreased consumption of reagents.
Resumo:
Recent studies of mobile Web trends show the continued explosion of mobile-friend content. However, the wide number and heterogeneity of mobile devices poses several challenges for Web programmers, who want automatic delivery of context and adaptation of the content to mobile devices. Hence, the device detection phase assumes an important role in this process. In this chapter, the authors compare the most used approaches for mobile device detection. Based on this study, they present an architecture for detecting and delivering uniform m-Learning content to students in a Higher School. The authors focus mainly on the XML device capabilities repository and on the REST API Web Service for dealing with device data. In the former, the authors detail the respective capabilities schema and present a new caching approach. In the latter, they present an extension of the current API for dealing with it. Finally, the authors validate their approach by presenting the overall data and statistics collected through the Google Analytics service, in order to better understand the adherence to the mobile Web interface, its evolution over time, and the main weaknesses.
Resumo:
Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and Technology
Resumo:
A novel electrochemical sensor for ochratoxin A (OTA) detection was fabricated through the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and a molecularly imprinted polymer (MIP). The MWCNTs dramatically promoted the sensitivity of the developed sensor, while polypyrrole (PPy) imprinted with OTA served as the selective recognition element. The imprinted PPy film was prepared by electropolymerization of pyrrole in the presence of OTA as a template molecule via cyclic voltammetry (CV). The electrochemical oxidation of OTA at the developed sensor was investigated by CV and differential pulse voltammetry (DPV). The developed MIP/MWCNT/GCE sensor showed a linear relationship, when using DPV, between peak current intensity and OTA concentration in the range between 0.050 and 1.0 μM, with limits of detection (LOD) and quantification of 0.0041 μM (1.7 μg/L) and 0.014 μM (5.7 μg/L) respectively. With the developed sensor precise results were obtained; relative standard deviations of 4.2% and 7.5% in the evaluation of the repeatability and reproducibility, respectively. The MIP/MWCNT/GCE sensor is simple to fabricate and easy to use and was successfully applied to the determination of OTA in spiked beer and wine samples, with recoveries between 84 and 104%, without the need of a sample pre-treatment step.
Resumo:
In this work, a norfloxacin selective modified glassy carbon electrode (GCE) based on a molecularly imprinted polymer (MIP) as electrochemical sensor was developed. A suspension of multi-walled carbon nanotubes (MWCNTs) was deposited on the electrode surface. Subsequently, a molecularly imprinted film was prepared by electropolymerization, via cyclic voltammetry of pyrrole (PPy) in the presence of norfloxacin (NFX) as the template molecule. A control electrode (NIP) was also prepared. Scanning electron microscopy (SEM) and cyclic voltammetry in a ferrocyanide solution were performed for morphological and electrochemical characterisation, respectively. Several experimental parameters were studied and optimised. For quantification purposes the MIP/MWCNT/GCE was immersed in NFX solutions for 10 min, and the detection was performed in voltammetric cell by square wave voltammetry. The proposed sensor presented a linear behaviour, between peak current intensity and logarithmic concentration of NFX between 1 × 10−7 and 8 × 10−6 M. The obtained results presented good precision, with a repeatability of 4.3% and reproducibility of 9% and the detection limit was 4.6 × 10−8 M (S/N = 3). The developed sensor displayed good selectivity and operational lifetime, is simple to fabricate and easy to operate and was successfully applied to the analysis of NFX in urine samples.
Resumo:
We detected Toxoplasma gondii oocysts in feces of experimentally infected cats, using a Kato Katz approach with subsequent Kinyoun staining. Animals serologically negative to T. gondii were infected orally with 5x10² mice brain cysts of ME49 strain. Feces were collected daily from the 3rd to the 30th day after challenge. Oocysts were detected by qualitative sugar flotation and the quantitative modified Kato Katz stained by Kinyoun (KKK). In the experimentally infected cats, oocysts were detected from the 7th to 15th day through sugar flotation technique, but oocysts were found in KKK from the 6th to 16th day, being sensitive for a larger period, with permanent documentation. The peak of oocysts excretion occurred between the 8th to 11th days after challenge, before any serological positive result. KKK could be used in the screening and quantification of oocysts excretion in feces of suspected animals, with reduced handling of infective material, decreasing the possibility of environmental and operator contamination.
Resumo:
According to the new KDIGO (Kidney Disease Improving Global Outcomes) guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling,the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP) is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 μm were stained to identify TRACP at different incubation temperatures (37º, 45º, 60º, 70º and 80ºC) for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone) was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae). Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60ºC and 70ºC. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 minutes, the reaction should be carried out at 60ºC. As active osteoclasts are usually scarce in a bone section, the standardization of the histochemistry method is of great relevance, to optimize the identification of these cells and increase the accuracy of the histomosphometric results. Our results, allowing an increase in osteoclasts contrast, also support the use of semi-automatic histomorphometric measurements.
Resumo:
Dissertation to obtain the degree of Master in Electrical and Computer Engineering
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
As the complexity of markets and the dynamicity of systems evolve, the need for interoperable systems capable of strengthening enterprise communication effectiveness increases. This is particularly significant when it comes to collaborative enterprise networks, like manufacturing supply chains, where several companies work, communicate, and depend on each other, in order to achieve a specific goal. Once interoperability is achieved, that is once all network parties are able to communicate with and understand each other, organisations are able to exchange information along a stable environment that follows agreed laws. However, as markets adapt to new requirements and demands, an evolutionary behaviour is triggered giving space to interoperability problems, thus disrupting the sustainability of interoperability and raising the need to develop monitoring activities capable of detecting and preventing unexpected behaviour. This work seeks to contribute to the development of monitoring techniques for interoperable SOA-based enterprise networks. It focuses on the automatic detection of harmonisation breaking events during real-time communications, and strives to develop and propose a methodological approach to handle these disruptions with minimal or no human intervention, hence providing existing service-based networks with the ability to detect and promptly react to interoperability issues.
Resumo:
Ship tracking systems allow Maritime Organizations that are concerned with the Safety at Sea to obtain information on the current location and route of merchant vessels. Thanks to Space technology in recent years the geographical coverage of the ship tracking platforms has increased significantly, from radar based near-shore traffic monitoring towards a worldwide picture of the maritime traffic situation. The long-range tracking systems currently in operations allow the storage of ship position data over many years: a valuable source of knowledge about the shipping routes between different ocean regions. The outcome of this Master project is a software prototype for the estimation of the most operated shipping route between any two geographical locations. The analysis is based on the historical ship positions acquired with long-range tracking systems. The proposed approach makes use of a Genetic Algorithm applied on a training set of relevant ship positions extracted from the long-term storage tracking database of the European Maritime Safety Agency (EMSA). The analysis of some representative shipping routes is presented and the quality of the results and their operational applications are assessed by a Maritime Safety expert.
Resumo:
This project was funded under the Applied Research Grants Scheme administered by Enterprise Ireland. The project was a partnership between Galway - Mayo Institute of Technology and an industrial company, Tyco/Mallinckrodt Galway. The project aimed to develop a semi - automatic, self - learning pattern recognition system capable of detecting defects on the printed circuits boards such as component vacancy, component misalignment, component orientation, component error, and component weld. The research was conducted in three directions: image acquisition, image filtering/recognition and software development. Image acquisition studied the process of forming and digitizing images and some fundamental aspects regarding the human visual perception. The importance of choosing the right camera and illumination system for a certain type of problem has been highlighted. Probably the most important step towards image recognition is image filtering, The filters are used to correct and enhance images in order to prepare them for recognition. Convolution, histogram equalisation, filters based on Boolean mathematics, noise reduction, edge detection, geometrical filters, cross-correlation filters and image compression are some examples of the filters that have been studied and successfully implemented in the software application. The software application developed during the research is customized in order to meet the requirements of the industrial partner. The application is able to analyze pictures, perform the filtering, build libraries, process images and generate log files. It incorporates most of the filters studied and together with the illumination system and the camera it provides a fully integrated framework able to analyze defects on printed circuit boards.
Resumo:
Furosemide (FD: Lasix) is a loop diuretic which strongly increases both urine flow and electrolyte urinary excretion. Healthy volunteers were administered 40 mg orally (dissolved in water) and concentrations of FD were determined in serum and urine for up to 6 h for eight subjects, who absorbed water at a rate of 400 ml/h. Quantification was performed by HPLC with fluorescence detection (excitation at 233 nm, emission at 389 nm) with a limit of detection of 5 ng/ml for a 300-microliters sample. The elution of FD was completed within 4 min using a gradient of acetonitrile concentration rising from 30 to 50% in 0.08 M phosphoric acid. The delay to the peak serum concentration ranged from 60 to 120 min. FD was still easily measurable in the sera from all subjects 6 h after administration. In urine, the excretion rates reached their maximum between 1 and 3 h. The total amount of FD excreted in the urine averaged 11.2 mg (range 7.6-14.0 mg), with a mean urine volume of 3024 ml (range 2620-3596 ml). Moreover, the urine density was lower than 1.010 (recommended as an upper limit in doping analysis to screen diuretics) only for 2 h. An additional volunteer was administered 40 mg of FD and his urine was collected over a longer period. FD was still detectable 48 h after intake. Gas chromatography-mass spectrometry with different types of ionization was used to confirm the occurrence of FD after permethylation of the extract. Negative-ion chemical ionization, with ammonia as reactant gas, was found to be the most sensitive method of detection.
Resumo:
Aujourd'hui, les problèmes des maladies infectieuses concernent l'émergence d'infections difficiles à traiter, telles que les infections associées aux implants et les infections fongiques invasives chez les patients immunodéprimés. L'objectif de cette thèse était de développer des stratégies pour l'éradication des biofilms bactériens (partie 1), ainsi que d'étudier des méthodes innovantes pour la détection microbienne, pour l'établissement de nouveaux tests de sensibilité (partie 2). Le traitement des infections associées aux implants est difficile car les biofilms bactériens peuvent résister à des niveaux élevés d'antibiotiques. A ce jour, il n'y a pas de traitement optimal défini contre des infections causées par des bactéries de prévalence moindre telles que Enterococcus faecalis ou Propionibacterium acnés. Dans un premier temps, nous avons démontré une excellente activité in vitro de la gentamicine sur une souche de E. faecalis en phase stationnaire de croissance Nous avons ensuite confirmé l'activité de la gentamicine sur un biofilm précoce en modèle expérimental animal à corps étranger avec un taux de guérison de 50%. De plus, les courbes de bactéricidie ainsi que les résultats de calorimétrie ont prouvé que l'ajout de gentamicine améliorait l'activité in vitro de la daptomycine, ainsi que celle de la vancomycine. In vivo, le schéma thérapeutique le plus efficace était l'association daptomycine/gentamicine avec un taux de guérison de 55%. En établissant une nouvelle méthode pour l'évaluation de l'activité des antimicrobiens vis-à-vis de micro-organismes en biofilm, nous avons démontré que le meilleur antibiotique actif sur les biofilms à P. acnés était la rifampicine, suivi par la penicilline G, la daptomycine et la ceftriaxone. Les études conduites en modèle expérimental animal ont confirmé l'activité de la rifampicine seule avec un taux de guérison 36%. Le meilleur schéma thérapeutique était au final l'association rifampicine/daptomycine avec un taux de guérison 63%. Les associations de rifampicine avec la vancomycine ou la levofloxacine présentaient des taux de guérisons respectivement de 46% et 25%. Nous avons ensuite étudié l'émergence in vitro de la résistance à la rifampicine chez P. acnés. Nous avons observé un taux de mutations de 10"9. La caractérisation moléculaire de la résistance chez les mutant-résistants a mis en évidence l'implication de 5 mutations ponctuelles dans les domaines I et II du gène rpoB. Ce type de mutations a déjà été décrit au préalable chez d'autres espèces bactériennes, corroborant ainsi la validité de nos résultats. La deuxième partie de cette thèse décrit une nouvelle méthode d'évaluation de l'efficacité des antifongiques basée sur des mesures de microcalorimétrie isotherme. En utilisant un microcalorimètre, la chaleur produite par la croissance microbienne peut être-mesurée en temps réel, très précisément. Nous avons évalué l'activité de l'amphotéricine B, des triazolés et des échinocandines sur différentes souches de Aspergillus spp. par microcalorimétrie. La présence d'amphotéricine Β ou de triazole retardait la production de chaleur de manière concentration-dépendante. En revanche, pour les échinochandines, seule une diminution le pic de « flux de chaleur » a été observé. La concordance entre la concentration minimale inhibitrice de chaleur (CMIC) et la CMI ou CEM (définie par CLSI M38A), avec une marge de 2 dilutions, était de 90% pour l'amphotéricine B, 100% pour le voriconazole, 90% pour le pozoconazole et 70% pour la caspofongine. La méthode a été utilisée pour définir la sensibilité aux antifongiques pour d'autres types de champignons filamenteux. Par détermination microcalorimétrique, l'amphotéricine B s'est avéré être l'agent le plus actif contre les Mucorales et les Fusarium spp.. et le voriconazole le plus actif contre les Scedosporium spp. Finalement, nous avons évalué l'activité d'associations d'antifongiques vis-à-vis de Aspergillus spp. Une meilleure activité antifongique était retrouvée avec l'amphotéricine B ou le voriconazole lorsque ces derniers étaient associés aux échinocandines vis-à-vis de A. fumigatus. L'association échinocandine/amphotéricine B a démontré une activité antifongique synergique vis-à-vis de A. terreus, contrairement à l'association échinocandine/voriconazole qui ne démontrait aucune amélioration significative de l'activité antifongique. - The diagnosis and treatment of infectious diseases are today increasingly challenged by the emergence of difficult-to-manage situations, such as infections associated with medical devices and invasive fungal infections, especially in immunocompromised patients. The aim of this thesis was to address these challenges by developing new strategies for eradication of biofilms of difficult-to-treat microorganisms (treatment, part 1) and investigating innovative methods for microbial detection and antimicrobial susceptibility testing (diagnosis, part 2). The first part of the thesis investigates antimicrobial treatment strategies for infections caused by two less investigated microorganisms, Enterococcus faecalis and Propionibacterium acnes, which are important pathogens causing implant-associated infections. The treatment of implant-associated infections is difficult in general due to reduced susceptibility of bacteria when present in biofilms. We demonstrated an excellent in vitro activity of gentamicin against E. faecalis in stationary growth- phase and were able to confirm the activity against "young" biofilms (3 hours) in an experimental foreign-body infection model (cure rate 50%). The addition of gentamicin improved the activity of daptomycin and vancomycin in vitro, as determined by time-kill curves and microcalorimetry. In vivo, the most efficient combination regimen was daptomycin plus gentamicin (cure rate 55%). Despite a short duration of infection, the cure rates were low, highlighting that enterococcal biofilms remain difficult to treat despite administration of newer antibiotics, such as daptomycin. By establishing a novel in vitro assay for evaluation of anti-biofilm activity (microcalorimetry), we demonstrated that rifampin was the most active antimicrobial against P. acnes biofilms, followed by penicillin G, daptomycin and ceftriaxone. In animal studies we confirmed the anti-biofilm activity of rifampin (cure rate 36% when administered alone), as well as in combination with daptomycin (cure rate 63%), whereas in combination with vancomycin or levofloxacin it showed lower cure rates (46% and 25%, respectively). We further investigated the emergence of rifampin resistance in P. acnes in vitro. Rifampin resistance progressively emerged during exposure to rifampin, if the bacterial concentration was high (108 cfu/ml) with a mutation rate of 10"9. In resistant isolates, five point mutations of the rpoB gene were found in cluster I and II, as previously described for staphylococci and other bacterial species. The second part of the thesis describes a novel real-time method for evaluation of antifungals against molds, based on measurements of the growth-related heat production by isothermal microcalorimetry. Current methods for evaluation of antifungal agents against molds, have several limitations, especially when combinations of antifungals are investigated. We evaluated the activity of amphotericin B, triazoles (voriconazole, posaconazole) and echinocandins (caspofungin and anidulafungin) against Aspergillus spp. by microcalorimetry. The presence of amphotericin Β or a triazole delayed the heat production in a concentration-dependent manner and the minimal heat inhibition concentration (MHIC) was determined as the lowest concentration inhibiting 50% of the heat produced at 48 h. Due to the different mechanism of action echinocandins, the MHIC for this antifungal class was determined as the lowest concentration lowering the heat-flow peak with 50%. Agreement within two 2-fold dilutions between MHIC and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. We further evaluated our assay for antifungal susceptibility testing of non-Aspergillus molds. As determined by microcalorimetry, amphotericin Β was the most active agent against Mucorales and Fusarium spp., whereas voriconazole was the most active agent against Scedosporium spp. Finally, we evaluated the activity of antifungal combinations against Aspergillus spp. Against A. jumigatus, an improved activity of amphotericin Β and voriconazole was observed when combined with an echinocandin. Against A. terreus, an echinocandin showed a synergistic activity with amphotericin B, whereas in combination with voriconazole, no considerable improved activity was observed.