110 resultados para Autoantibody


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction of macrophages with apoptotic cells involves multiple steps including recognition, tethering, phagocytosis, and anti-inflammatory macrophage responses. Defective apoptotic cell clearance is associated with pathogenesis of autoimmune disease. CD14 is a surface receptor that functions in vitro in the removal of apoptotic cells by human and murine macrophages, but its mechanism of action has not been defined. Here, we demonstrate that CD14 functions as a macrophage tethering receptor for apoptotic cells.Significantly, CD14-/- macrophages in vivo are defective in clearing apoptotic cells in multiple tissues, suggesting a broad role for CD14 in the clearance process. However, the resultant persistence of apoptotic cells does not lead to inflammation or increased autoantibody production, most likely because, as we show, CD14-/- macrophages retain the ability to generate anti-inflammatory signals in response to apoptotic cells. We conclude that CD14 plays a broad tethering role in apoptotic cell clearance in vivo and that apoptotic cells can persist in the absence of proinflammatory consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B cell abnormalities contribute to the development and progress of autoimmune disease. Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited to the production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells have other functions potentially relevant to autoimmunity. Such functions include antigen presentation to and activation of T cells, expression of costimulatory molecules and cytokine production. Recently, the ability of B cells to negatively regulate cellular immune responses and inflammation has been described and the concept of “regulatory B cells” has emerged. A variety of cytokines produced by regulatory B cell subsets have been reported with interleukin-10 (IL-10) being the most studied. IL-10-producing regulatory B cells predominantly localize within a rare CD1dhiCD5+ B cell subset in mice and the CD24hiCD27+ B cell subset in adult humans. This specific IL-10-producing subset of regulatory B cells have been named “B10 cells” to highlight that the regulatory function of these rare B cells is primarily mediated by IL-10, and to distinguish them from other regulatory B cell subsets that regulate immune responses through different mechanisms. B10 cells have been studies in a variety of animal models with autoimmune disease and clinical settings of human autoimmunity. There are many unsolved questions related to B10 cells including their surface phenotype, their origin and development in vivo, and their role in autoimmunity.

In Chapter 3 of this dissertation, the role of the B cell receptor (BCR) in B10 cell development is highlighted. First, the BCR repertoire of mouse peritoneal cavity B10 cells is examined by single cell sequencing; peritoneal cavity B10 cells have clonally diverse germline BCRs that are predominantly unmutated. Second, mouse B10 cells are shown to have higher frequencies of λ+ BCRs compared to non-B10 cells which may indicate the involvement of BCR light chain editing early in the process of B10 cell development in vivo. Third, human peripheral blood B10 cells are examined and are also found to express higher frequencies of λ chains compared to non-b10 cells. Therefore, B10 cell BCRs are clonally diverse and enriched for unmutated germline sequences and λ light chains.

In Chapter 4 of this dissertation, B10 cells are examined in the healthy developing human across the entire age range of infancy, childhood and adolescence, and in a large cohort of children with autoimmunity. The study of B10 cells in the developing human documents a massive transient expansion during middle childhood when up to 30% of blood B cells were competent to produce IL-10. The surface phenotype of pediatric B10 cells was variable and reflective of overall B cell development. B10 cells down-regulated CD4+ T cell interferon-gamma (IFN-γ) production through IL-10-dependent pathways and IFN-γ inhibited whereas interleukin-21 (IL-21) promoted B cell IL-10 competency in vitro. Children with autoimmunity had a contracted B10 cell compartment, along with increased IFN-γ and decreased IL-21 serum levels compared to age-matched healthy controls. The decreased B10 cell frequencies and numbers in children with autoimmunity may be partially explained by the differential regulation of B10 cell development by IFN-γ and IL-21 and alterations in serum cytokine levels. The age-related changes of the B10 cell compartment during normal human development provide new insights into immune tolerance mechanisms involved in inflammation and autoimmunity.

These studies collectively demonstrate that BCR signals are the most important early determinant of B10 cell development in vivo, that human B10 cells are not a surface phenotype defined developmental B cell subset but a functionally defined regulatory B cell subset that regulates CD4+ T IFN-γ production through IL-10-dependent pathways and that human B10 cell development can be regulated by soluble factors in vivo such as the cytokine milieu. The findings of these studies provide new insights into immune tolerance mechanisms involved in human autoimmunity and the potent effects of IL-21 on human B cell IL-10 competence in vitro open new horizons in the development of autologous B10 cell-based therapies as an approach to treat human autoimmune disease in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human ether-a-go-go-related gene (hERG) protein passes the rapidly activating delayed rectifier potassium channel (IKr), and malfunction of hERG protein/IKr is the primary cause of acquired long QT syndrome (LQTS). Autoimmune diseases are significantly correlated with prolonged QT intervals, for which autoantibodies have been implicated. The anti-Ro52 autoantibody is the most frequently evaluated, and importantly has been correlated with prolonged QT intervals. Pathological anti-Ro52-hERG interactions have been discussed as a mechanism for autoimmune disease-related LQTS. However, the mechanism is unclear, and it does not explain LQTS in autoimmune diseases which do not commonly express anti-Ro52. In this thesis, I investigated the effects of anti-Ro52 on hERG/IKr function. Through Western blot analysis, whole-cell patch-clamp, and immunofluorescence, I show that anti-Ro52 chronically (12 h) reduced hERG protein expression and hERG current by over 50%, but did not acutely block the channel. My work revealed a novel mechanism in which the Fc portion of anti-Ro52 interacts with the extracellular S5-pore linker of the channel to induce internalization through a tyrosine phosphorylation dependent pathway. This phenomenon extends beyond anti-Ro52 IgG, as other IgG, regardless of their antigen binding specificity, have the potential to reduce hERG expression/current. Rather, the ability of IgG to reduce hERG expression and current is dependent on the IgG subclass, as we show mouse IgG2A was the only mouse IgG subclass which reduced hERG expression. These results provide a novel explanation for autoimmune disease associated LQTS. It also has implications in the development of safe monoclonal antibody drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Develop recommendations for women's health issues and family planning in systemic lupus erythematosus (SLE) and/or antiphospholipid syndrome (APS). METHODS: Systematic review of evidence followed by modified Delphi method to compile questions, elicit expert opinions and reach consensus. RESULTS: Family planning should be discussed as early as possible after diagnosis. Most women can have successful pregnancies and measures can be taken to reduce the risks of adverse maternal or fetal outcomes. Risk stratification includes disease activity, autoantibody profile, previous vascular and pregnancy morbidity, hypertension and the use of drugs (emphasis on benefits from hydroxychloroquine and antiplatelets/anticoagulants). Hormonal contraception and menopause replacement therapy can be used in patients with stable/inactive disease and low risk of thrombosis. Fertility preservation with gonadotropin-releasing hormone analogues should be considered prior to the use of alkylating agents. Assisted reproduction techniques can be safely used in patients with stable/inactive disease; patients with positive antiphospholipid antibodies/APS should receive anticoagulation and/or low-dose aspirin. Assessment of disease activity, renal function and serological markers is important for diagnosing disease flares and monitoring for obstetrical adverse outcomes. Fetal monitoring includes Doppler ultrasonography and fetal biometry, particularly in the third trimester, to screen for placental insufficiency and small for gestational age fetuses. Screening for gynaecological malignancies is similar to the general population, with increased vigilance for cervical premalignant lesions if exposed to immunosuppressive drugs. Human papillomavirus immunisation can be used in women with stable/inactive disease. CONCLUSIONS: Recommendations for women's health issues in SLE and/or APS were developed using an evidence-based approach followed by expert consensus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a case of a 55-year-old woman who was evaluated for multiple episodes of late postprandial hypoglycaemia. We diagnosed her condition as insulin autoimmune syndrome (Hirata disease) because of a high insulin autoantibody (IAA) titre in association with high levels of plasmatic insulin and hypoglycaemia in a patient with no history of exogenous insulin administration and the exclusion of other causes of late postprandial hypoglycaemia.