959 resultados para Atmosphere-ocean interaction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

To increase the sparse knowledge of long-term Southern Hemisphere (SH) climate variability, we assess an ensemble of 4 transient simulations over the last 500 yr performed with a state-of-the-art atmosphere ocean general circulation model. The model is forced with reconstructions of solar irradiance, greenhouse gas (GHG) and volcanic aerosol concentrations. A 1990 control simulation shows that the model is able to represent the Southern Annular Mode (SAM), and to some extent the South Pacific Dipole (SPD) and the Zonal Wave 3 (ZW3). During the past 500 yr we find that SPD and ZW3 variability remain stable, whereas SAM shows a significant shift towards its positive state during the 20th century. Regional temperatures over South America are strongly influenced by changing both GHG concentrations and volcanic eruptions, whereas precipitation shows no significant response to the varying external forcing. For temperature this stands in contrast to proxy records, suggesting that SH climate is dominated by internal variability rather than external forcing. The underlying dynamics of the temperature changes generally point to a combination of several modes, thus, hampering the possibilities of regional reconstructing the modes from proxy records. The linear imprint of the external forcing is as expected, i.e. a warming for increase in the combined solar and GHG forcing and a cooling after volcanic eruptions. Dynamically, only the increase in SAM with increased combined forcing is simulated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the effects of a recently proposed 21st century Dalton minimum like decline of solar activity on the evolution of Earth's climate and ozone layer. Three sets of two member ensemble simulations, radiatively forced by a midlevel emission scenario (Intergovernmental Panel on Climate Change RCP4.5), are performed with the atmosphere-ocean chemistry-climate model AOCCM SOCOL3-MPIOM, one with constant solar activity, the other two with reduced solar activity and different strength of the solar irradiance forcing. A future grand solar minimum will reduce the global mean surface warming of 2 K between 1986–2005 and 2081–2100 by 0.2 to 0.3 K. Furthermore, the decrease in solar UV radiation leads to a significant delay of stratospheric ozone recovery by 10 years and longer. Therefore, the effects of a solar activity minimum, should it occur, may interfere with international efforts for the protection of global climate and the ozone layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important key for the understanding of the dynamic response to large tropical volcanic eruptions is the warming of the tropical lower stratosphere and the concomitant intensification of the polar vortices. Although this mechanism is reproduced by most general circulation models today, most models still fail in producing an appropriate winter warming pattern in the Northern Hemisphere. In this study ensemble sensitivity experiments were carried out with a coupled atmosphere-ocean model to assess the influence of different ozone climatologies on the atmospheric dynamics and in particular on the northern hemispheric winter warming. The ensemble experiments were perturbed by a single Tambora-like eruption. Larger meridional gradients in the lower stratospheric ozone favor the coupling of zonal wind anomalies between the stratosphere and the troposphere after the eruption. The associated sea level pressure, temperature, and precipitation patterns are more pronounced and the northern hemispheric winter warming is highly significant. Conversely, weaker meridional ozone gradients lead to a weaker response of the winter warming and the associated patterns. The differences in the number of stratosphere-troposphere coupling events between the ensembles experiments indicate a nonlinear response behavior of the dynamics with respect to the ozone and the volcanic forcing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1 PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%–25%; 5%–95% confidence limits) for RCP2.6, 26% (23%–30%) for RCP4.5, 29% (23%–35%) for RCP6.0 and 40% (36%–44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°–32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr−1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9–3.5%) in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr−1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr−1 or 3.6 ± 0.2 PgC yr−1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr−1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr−1. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ± 1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr − 1, ELUC 0.9 ± 0.5 GtC yr − 1, GATM 4.3 ± 0.1 GtC yr − 1, S OCEAN 2.5 ± 0.5 GtC yr − 1, and S LAND 2.8 ± 0.8 GtC yr − 1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr − 1, 2.2 % above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr − 1, SOCEANwas 2.9 ± 0.5 GtC yr −1, and assuming an ELU Cof 1.0 ± 0.5 GtC yr − 1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr − 1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 con- centration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1 % (1.1–3.1 %) to 9.9 ± 0.5 GtC in 2013, 61 % above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70 % from EFF (390 ± 20 GtC) and 30 % from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Past and future forest composition and distribution in temperate mountain ranges is strongly influenced by temperature and snowpack. We used LANDCLIM, a spatially explicit, dynamic vegetation model, to simulate forest dynamics for the last 16,000 years and compared the simulation results to pollen and macrofossil records at five sites on the Olympic Peninsula (Washington, USA). To address the hydrological effects of climate-driven variations in snowpack on simulated forest dynamics, we added a simple snow accumulation-and-melt module to the vegetation model and compared simulations with and without the module. LANDCLIM produced realistic present-day species composition with respect to elevation and precipitation gradients. Over the last 16,000 years, simulations driven by transient climate data from an atmosphere-ocean general circulation model (AOGCM) and by a chironomid-based temperature reconstruction captured Late-glacial to Late Holocene transitions in forest communities. Overall, the reconstruction-driven vegetation simulations matched observed vegetation changes better than the AOGCM-driven simulations. This study also indicates that forest composition is very sensitive to snowpack-mediated changes in soil moisture. Simulations without the snow module showed a strong effect of snowpack on key bioclimatic variables and species composition at higher elevations. A projected upward shift of the snow line and a decrease in snowpack might lead to drastic changes in mountain forests composition and even a shift to dry meadows due to insufficient moisture availability in shallow alpine soils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The North Water (NOW) Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada) at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1) sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2), Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS)) and (2) thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison with MODIS data (thin-ice thickness < 20 cm) shows that the wintertime polynya area estimates derived by MODIS are about 30 to 40% higher than those derived using the polynya signature simulation method (PSSM) with AMSR-E data. In turn, the difference in polynya area between PSSM and a sea ice concentration (SIC) threshold of 70% is fairly low (approximately 10%) when applied to AMSR-E data. For the coarse-resolution SSM/I-SSMIS data, this difference is much larger, particularly in November and December. Instead of a sea ice concentration threshold, the PSSM method should be used for SSM/I-SSMIS data. Depending on the type of cloud-cover correction, the calculated ice production based on MODIS data reaches an average value of 264.4 ± 65.1 km**3 to 275.7 ± 67.4 km**3 (2002/2003 to 2014/2015) and shows a high interannual variability. Our achieved long-term results underline the major importance of the NOW polynya considering its influence on Arctic ice production and associated atmosphere/ocean processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Arctic hydrological cycle throughout the Holocene is analyzed based on the results of transient simulations with the coupled atmosphere-ocean circulation model ECHO-G. The results suggest a ~ 2 % increase of mid-Holocene to preindustrial Arctic river discharges for the Eurasian continent. However, rivers of the North America Arctic realm show a moderate runoff decline of approximately 4 to 5 % for the same period. The total river discharge into the Arctic Ocean has remained at an approximately constant preindustrial level since the mid Holocene. The positive discharge trend within Eurasia is caused by a more rapid decrease in local net evaporation compared to a smaller decline in advected moisture and hence precipitation. This effect is neither recognized within the North American Arctic domain nor in the far eastern part of the Eurasian Arctic realm. A detailed comparison of these model findings with a variety of proxy studies is conducted. The collected proxy records show trends of continental surface temperatures and precipitation rates that are consistent with the simulations. A continuation of the transient Holocene runs for the 19th and 20th century with increased greenhouse gases indicates an increase of the total river influx into the Arctic Ocean of up to 7.6 %. The Eurasian river discharges increase by 7.5 %, the North American discharges by up to 8.4 %. The most rapid increases have been detected since the beginning of the 20th century. These results are corroborated by the observed rising of Arctic river discharges during the last century which is attributed to anthropogenic warming. The acceleration of the Arctic hydrological cycle in the 20th century is without precedence in the Holocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study provides a theoretical assessment of the potential bias due to differential lateral transport on multi-proxy studies based on a range of marine microfossils. Microfossils preserved in marine sediments are at the centre of numerous proxies for paleoenvironmental reconstructions. The precision of proxies is based on the assumption that they accurately represent the overlying watercolumn properties and faunas. Here we assess the possibility of a syn-depositional bias in sediment assemblages caused by horizontal drift in the water column, due to differential settling velocities of sedimenting particles based on their shape, size and density, and due to differences in current velocities. Specifically we calculate the post-mortem lateral transport undergone by planktic foraminifera and a range of other biological proxy carriers (diatoms, radiolaria and fecal pellets transporting coccolithophores) in several regions with high current velocities. We find that lateral transport of different planktic foraminiferal species is minimal due to high settling velocities. No significant shape- or size-dependent sorting occurs before reaching the sediment, making planktic foraminiferal ideal proxy carriers. In contrast, diatoms, radiolaria and fecal pellets can be transported up to 500km in some areas. For example in the Agulhas current, transport can lead to differences of up to 2°C in temperature reconstructions between different proxies in response to settling velocities. Therefore, sediment samples are likely to contain different proportions of local and imported particles, decreasing the precision of proxies based on these groups and the accuracy of the temperature reconstruction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We re-evaluate the Greenland mass balance for the recent period using low-pass Independent Component Analysis (ICA) post-processing of the Level-2 GRACE data (2002-2010) from different official providers (UTCSR, JPL, GFZ) and confirm the present important ice mass loss in the range of -70 and -90 Gt/y of this ice sheet, due to negative contributions of the glaciers on the east coast. We highlight the high interannual variability of mass variations of the Greenland Ice Sheet (GrIS), especially the recent deceleration of ice loss in 2009-2010, once seasonal cycles are robustly removed by Seasonal Trend Loess (STL) decomposition. Interannual variability leads to varying trend estimates depending on the considered time span. Correction of post-glacial rebound effects on ice mass trend estimates represents no more than 8 Gt/y over the whole ice sheet. We also investigate possible climatic causes that can explain these ice mass interannual variations, as strong correlations between GRACE-based mass balance and atmosphere/ocean parallels are established: (1) changes in snow accumulation, and (2) the influence of inputs of warm ocean water that periodically accelerate the calving of glaciers in coastal regions and, feed-back effects of coastal water cooling by fresh currents from glaciers melting. These results suggest that the Greenland mass balance is driven by coastal sea surface temperature at time scales shorter than accumulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA) to initiate a study on ''Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites''. The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA) and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field spherical harmonic series, which is the quantity commonly used to describe the Earth's global gravity field. The result of this study is a twelve-year time-series of 6-hourly time variable gravity field spherical harmonics up to degree and order 180 corresponding to a global spatial resolution of 1 degree in latitude and longitude. In this paper, we outline the input data sets and the process of combining these data sets into a coherent model of temporal gravity field changes. The resulting time series was used in some follow-on studies and is available to anybody interested.