994 resultados para Atlantic-Mediterranean relationships
Resumo:
Ensuring the accuracy of dietary assessment instruments is paramount for interpreting diet-disease relationships. The present study assessed the relative and construct validity of the 14-point Mediterranean Diet Adherence Screener (MEDAS) used in the Prevencio´n con Dieta Mediterra´nea (PREDIMED) study, a primary prevention nutrition-intervention trial. A validated FFQ and the MEDAS were administered to 7146 participants of the PREDIMED study. The MEDASderived PREDIMED score correlated significantly with the corresponding FFQ PREDIMED score (r = 0.52; intraclass correlation coefficient = 0.51) and in the anticipated directions with the dietary intakes reported on the FFQ. Using Bland Altman"s analysis, the average MEDAS Mediterranean diet score estimate was 105% of the FFQ PREDIMED score estimate. Limits of agreement ranged between 57 and 153%. Multiple linear regression analyses revealed that a higher PREDIMED score related directly (P , 0.001) to HDL-cholesterol (HDL-C) and inversely (P , 0.038) to BMI, waist circumference, TG, the TG:HDL-C ratio, fasting glucose, and the cholesterol:HDL-C ratio. The 10-y estimated coronary artery disease risk decreased as the PREDIMED score increased (P , 0.001). The MEDAS is a valid instrument for rapid estimation of adherence to the Mediterranean diet and may be useful in clinical practice.
Resumo:
Ensuring the accuracy of dietary assessment instruments is paramount for interpreting diet-disease relationships. The present study assessed the relative and construct validity of the 14-point Mediterranean Diet Adherence Screener (MEDAS) used in the Prevencio´n con Dieta Mediterra´nea (PREDIMED) study, a primary prevention nutrition-intervention trial. A validated FFQ and the MEDAS were administered to 7146 participants of the PREDIMED study. The MEDASderived PREDIMED score correlated significantly with the corresponding FFQ PREDIMED score (r = 0.52; intraclass correlation coefficient = 0.51) and in the anticipated directions with the dietary intakes reported on the FFQ. Using Bland Altman"s analysis, the average MEDAS Mediterranean diet score estimate was 105% of the FFQ PREDIMED score estimate. Limits of agreement ranged between 57 and 153%. Multiple linear regression analyses revealed that a higher PREDIMED score related directly (P , 0.001) to HDL-cholesterol (HDL-C) and inversely (P , 0.038) to BMI, waist circumference, TG, the TG:HDL-C ratio, fasting glucose, and the cholesterol:HDL-C ratio. The 10-y estimated coronary artery disease risk decreased as the PREDIMED score increased (P , 0.001). The MEDAS is a valid instrument for rapid estimation of adherence to the Mediterranean diet and may be useful in clinical practice.
Resumo:
The main goal of the InterAmbAr reseach project is to analyze the relationships between landscape systems and human land-use strategies on mountains and littoral plains from a long-term perspective. The study adopts a high resolution analysis of small-scale study areas located in the Mediterranean region of north-eastern Catalonia. The study areas are distributed along an altitudinal transect from the high mountain (above 2000m a.s.l.) to the littoral plain of Empordà (Fig. 1). High resolution interdisciplinary research has been carried out from 2010, based on the integration of palaeoenvironmental and archaeological data. The micro-scale approach is used to understand human-environmental relationships. It allows better understanding of the local-regional nature of environmental changes and the synergies between catchment-based systems, hydro-sedimentary regimes, human mobility, land-uses, human environments, demography, etc.
Resumo:
This paper discusses uncertainties in model projections of summer drying in the Euro-Mediterranean region related to errors and uncertainties in the simulation of the summer NAO (SNAO). The SNAO is the leading mode of summer SLP variability in the North Atlantic/European sector and modulates precipitation not only in the vicinity of the SLP dipole (northwest Europe) but also in the Mediterranean region. An analysis of CMIP3 models is conducted to determine the extent to which models reproduce the signature of the SNAO and its impact on precipitation and to assess the role of the SNAO in the projected precipitation reductions. Most models correctly simulate the spatial pattern of the SNAO and the dry anomalies in northwest Europe that accompany the positive phase. The models also capture the concurrent wet conditions in the Mediterranean, but the amplitude of this signal is too weak, especially in the east. This error is related to the poor simulation of the upper-level circulation response to a positive SNAO, namely the observed trough over the Balkans that creates potential instability and favors precipitation. The SNAO is generally projected to trend upwards in CMIP3 models, leading to a consistent signal of precipitation reduction in NW Europe, but the intensity of the trend varies greatly across models, resulting in large uncertainties in the magnitude of the projected drying. In the Mediterranean, because the simulated influence of the SNAO is too weak, no precipitation increase occurs even in the presence of a strong SNAO trend, reducing confidence in these projections.
Resumo:
Variations in water volume in small depressions in Mediterranean salt marshes in Girona (Spain) are described and the potential causes for these variations analysed. Although the basins appear to be endorrheic, groundwater circulation is intense, as estimated from the difference between water volume observed and that expected from the balance precipitation / evaporation. The rate of variation in volume (VR = AV / VAt) may be used to estimate groundwater supply ('circulation'), since direct measurements of this parameter are impossible. Volume.conductivity figures can also be used to estimate the quantity of circulation, and to investigate the origin of water supplied to the system. The relationships between variations in the volume of water in the basins and the main causes of flooding are also analysed. Sea storms, rainfall levels and strong, dry northerly winds are suggested as the main causes of the variations in the volumes of basins. The relative importance assigned to these factors has changed, following the recent regulation of freshwater flows entering the system
Resumo:
Species composition and distribution of marine benthic communities from La Herradura (Alboran Sea, western Mediterranean) are described to characterise its rocky and sedimentary bottoms bionomically. Rocky bottoms were studied by means of several underwater transects and soft bottoms with fixed stations along a bathymetric gradient. The study of the floristic and faunistic composition of the rocky benthic communities highlights depth as the main axis of variation. Factorial Correspondence Analysis segregates deep-water communities below 25 m depth (circalittoral communities) from shallower communities (axis I), and communities thriving between 5 and 25 m depth (lower infralittoral communities) from communities thriving close to the surface (shallow infralittoral communities) (axis II). The study of the sedimentary bottoms also suggests that depth, together with physical sedimentary properties, is the main axis of variation in species distribution. Floristic and faunistic records show the particular composition of La Herradura benthic communities, compared to Mediterranean and Atlantic ones. Mixing of Mediterranean and Atlantic waters, together with deep water upwelling episodes typical of this area, probably determine the peculiar composition of the benthic communities
Resumo:
The reproductive and general health of exploited fish stocks is an essential element of sustainable and profitable fisheries. The main purpose of this study was to assess the relationships between reproduction and two important parameters of fish health (parasitism and energy reserves) in female specimens of red mullet, Mullus barbatus, from the western Mediterranean Sea. We present new data for this species on (i) the prevalence and intensity of infection by metazoan parasites; (ii) the total lipid content in muscle and gonads as a measure of condition and (iii) fecundity and egg quality as a measure of their reproductive capacity. The results show that M. barbatus is a batch spawner with an income breeding strategy, an asynchronous development of oocytes and indeterminate fecundity. The results also indicate that the three most abundant and prevalent parasites significantly affect the condition and reproduction of M. barbatus. Specifically, the digenean, Opecoeloides furcatus, causes a reduction in the female"s energy reserves, while the nematodes, Hysterothylacium fabri and H. aduncum, produce a rise in egg production but impair egg quality. These implications of the relationships between parasitism, fish health and fish reproduction should be taken into consideration in the assessment and management of exploited species
Resumo:
Zooplankton community structure (composition, diversity, dynamics and trophic relationships) of Mediterranian marshes, has been analysed by means of a size based approach. In temporary basins the shape of the biomass-size spectra is related to the hydrological cycle. Linear shape spectra are more frequent in flooding situations when nutrient input causes population growth of small-sized organisms, more than compensating for the effect of competitive interactions. During confinement conditions the scarcity of food would decrease zooplankton growth and increase intra- and interspecific interactions between zooplankton organisms which favour the greatest sizes thus leading to the appearance of curved shape spectra. Temporary and permanent basins have similar taxonomic composition but the latter have higher species diversity, a more simplified temporal pattern and a size distribution dominated mainly by smaller sizes. In permanents basins zooplankton growth is not only conditioned by the availability of resources but by the variable predation of planktivorous fish, so that the temporal variability of the spectra may also be a result of temporal differences in fish predation. Size diversity seems to be a better indicator of the degree of this community structure than species diversity. The tendency of size diversity to increase during succession makes it useful to discriminate between different succession stages, fact that is not achieved by analysing only species diversity since it is low both under large and frequent or small and rare disturbances. Amino acid composition differences found among stages of copepod species indicate a gradual change in diet during the life cycle of these copepods, which provide evidence of food niche partitioning during ontogeny, whereas Daphnia species show a relatively constant amino acid composition. There is a relationship between the degree of trophic niche overlap among stages of the different species and nutrient concentration. Copepods, which have low trophic niche overlap among stages are dominant in food-limited environments, probably because trophic niche partitioning during development allow them to reduce intraspecific competition between adults, juveniles and nauplii. Daphnia species are only dominant in water bodies or periods with high productivity, probably due to the high trophic niche overlap between juveniles and adults. These findings suggest that, in addition to the effect of interspecific competition, predation and abiotic factors, the intraspecific competition might play also an important role in structuring zooplankton assemblages.
Resumo:
Variability in aspects of the hydrological cycle over the Europe-Atlantic region during the summer season is analysed for the period 1979-2007, using observational estimates, reanalyses and climate model simulations. Warming and moistening trends are evident in observations and models although decadal changes in water vapour are not well represented by reanalyses, including the new European Centre for Medium Range Weather Forecasts (ECMWF) Interim reanalysis. Over the north Atlantic and northern Europe, observed water vapour trends are close to that expected from the temperature trends and Clausius-Clapeyron equation (7% K-1), larger than the model simulations. Precipitation over Europe is dominated by large-scale dynamics with positive phases of the North Atlantic Oscillation coinciding with drier conditions over north Europe and wetter conditions over the Mediterranean region. Evaporation trends over Europe are positive in reanalyses and models, especially for the Mediterranean region (1-3% per decade in reanalyses and climate models). Over the north Atlantic, declining precipitation combined with increased moisture contributed to an apparent rise in water vapour residence time. Maximum precipitation minus evaporation over the north Atlantic occurred during summer 1991, declining thereafter.
Resumo:
This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5-10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970-1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061 +/- 0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models' inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.
Resumo:
A recent phylogenetic study based on multiple datasets is used as the framework for a more detailed examination of one of the ten molecularly circumscribed groups identified, the Ophrys fuciflora aggregate. The group is highly morphologically variable, prone to phenotypic convergence, shows low levels of sequence divergence and contains an unusually large proportion of threatened taxa, including the rarest Ophrys species in the UK. The aims of this study were to (a) circumscribe minimum resolvable genetically distinct entities within the O. fuciflora aggregate, and (b) assess the likelihood of gene flow between genetically and geographically distinct entities at the species and population levels. Fifty-five accessions sampled in Europe and Asia Minor from the O. fuciflora aggregate were studied using the AFLP genetic fingerprinting technique to evaluate levels of infraspecific and interspecific genetic variation and to assess genetic relationships between UK populations of O. fuciflora s.s. in Kent and in their continental European and Mediterranean counterparts. The two genetically and geographically distinct groups recovered, one located in England and central Europe and one in south-eastern Europe, are incongruent with current species delimitation within the aggregate as a whole and also within O. fuciflora s.s. Genetic diversity is higher in Kent than in the rest of western and central Europe. Gene flow is more likely to occur between populations in closer geographical proximity than those that are morphologically more similar. Little if any gene flow occurs between populations located in the south-eastern Mediterranean and those dispersed throughout the remainder of the distribution, revealing a genetic discontinuity that runs north-south through the Adriatic. This discontinuity is also evident in other clades of Ophrys and is tentatively attributed to the long-term influence of prevailing winds on the long-distance distribution of pollinia and especially seeds. A cline of gene flow connects populations from Kent and central and southern Europe; these individuals should therefore be considered part of an extensive meta-population. Gene flow is also evident among populations from Kent, which appear to constitute a single metapopulation. They show some evidence of hybridization, and possibly also introgression, with O. apifera.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.
Resumo:
Observations of a chemical at a point in the atmosphere typically show sudden transitions between episodes of high and low concentration. Often these are associated with a rapid change in the origin of air arriving at the site. Lagrangian chemical models riding along trajectories can reproduce such transitions, but small timing errors from trajectory phase errors dramatically reduce the correlation between modeled concentrations and observations. Here the origin averaging technique is introduced to obtain maps of average concentration as a function of air mass origin for the East Atlantic Summer Experiment 1996 (EASE96, a ground-based chemistry campaign). These maps are used to construct origin averaged time series which enable comparison between a chemistry model and observations with phase errors factored out. The amount of the observed signal explained by trajectory changes can be quantified, as can the systematic model errors as a function of air mass origin. The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT) can account for over 70% of the observed ozone signal variance during EASE96 when phase errors are side-stepped by origin averaging. The dramatic increase in correlation (from 23% without averaging) cannot be achieved by time averaging. The success of the model is attributed to the strong relationship between changes in ozone along trajectories and their origin and its ability to simulate those changes. The model performs less well for longer-lived chemical constituents because the initial conditions 5 days before arrival are insufficiently well known.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase