1000 resultados para Atlantic plateau


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lower and Upper Cretaceous sediments of the Maurice Ewing Bank, Site 511 (black shales, mudstones, zeolitic clays, and nannofossil chalk and ooze, 361 m thick) are characterized by an assemblage of planktonic foraminifers of low systematic diversity, including over 50 species. Representatives of Hedbergella, Globigerinelloides, Archaeoglobigerina, Whiteinella, Rugoglobigerina, and Heterohelix are predominant; species of Ticinella, Praeglobotruncana, Globotruncana, Schackoina, and Planoglobulina associated with some interbeds occur in smaller numbers. Planktonic foraminifers enable us to subdivide the Cretaceous sediments into Barremian-Aptian, Albian, upper Cenomanian, Turonian, Coniacian-Santonian, Santonian, Campanian, and upper Campanian-Maestrichtian intervals. The Lower Cretaceous (Albian) and Upper Cretaceous (upper Cenomanian-Turonian) are separated by a distinct hiatus and unconformity. In the Upper Cretaceous section, a hiatus may be present at the top of the Campanian. The upper Cenomanian-Santonian sediments are reduced in thickness, whereas the Campanian-Maestrichtian interval is expanded. In the Barremian-Aptian black shales, planktonic foraminifers are very rare: they were deposited in shallow water under anoxic conditions. In the Albian, when sedimentation conditions became oxidizing and the depth increased to 200-400 meters, they became more common. By the end of the Upper Cretaceous, depths appear to increase to 2000 meters. In the interbeds of calcareous sediments, planktonic foraminifers are common; in interbeds of zeolitic clays they are rare or absent (dissolution facies). Alternation of these types of sediments is especially characteristic of the Coniacian-lower Campanian, testifying to abrupt CCD fluctuations. The planktonic foraminifers of the Falkland Plateau belong to the Austral Province of the Southern Hemisphere. In their systematic composition they are extremely similar to microfauna of the Boreal Province of the Northern Hemisphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifty m of basement rocks underlying 185 m of Neogene and Mesozoic sediments were drilled seaward of the Mazagan Slope about 100 km west of Casablanca during Leg 79. These rocks are metagranites with mylonitic textures consisting dominantly of quartz, plagioclase, and potassium feldspar. Chemically, they are strongly peraluminous. This along with the absence of hornblende suggest that these rocks are similar to the S-type granites. Petrographic and chemical data suggest the possible existence of a former weathering surface on top of the Mazagan metagranite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Probable in-situ manganese deposits larger than 1 cm in diameter buried in ODP/DSDP cores were selected for study after examining previous descriptions of the manganese deposits in site reports and the ODP data base. Most of the selected samples from 11 cores occur at or just above sedimentary hiatuses or in slowly deposited sediments and are overlain by rapidly deposited sediments of biogenic, terrigenous or volcanogenic origin. The changes in sedimentation recorded in the lithostratigraphic sections around these deposits are closely related to changes in tectonic evolution, deep water circulation or biological productivity at the sites. The similarity in composition and structure of the buried deposits to those of the modern manganese nodules and crusts with no evidence of post-depositional change suggest that buried manganese deposits may be used as indicators of past sedimentary conditions during which they formed. Their major components are hydrogenetic and earlydiagenetic manganese minerals as well as detrital minerals. The characteristics of these manganese deposits suggests that similar processes of deposition have taken place since the Paleogene or older.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ~20°C and cooled an average of ~5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed study of strontium isotope variations in Neogene marine carbonate sediments from Deep Sea Drilling Project Site 590B, using techniques that allow the 87Sr/86Sr ratio to be determined to better than +/-0.00001, gives a high-resolution record of the Sr isotopic evolution of seawater. The data show that the rate of change of the marine 87Sr/86Sr ratio has varied significantly even on time scales as short as 1 m.y. Periods of particularly rapid growth appear to follow major marine regressions and probably reflect an increase in the delivery of radiogenic Sr from the continents coupled with a decreased submarine carbonate dissolution rate (greater carbonate compensation depth). Periods of relatively slowly changing 87Sr/86Sr follow major marine transgressions. On the basis of correlations with the marine oxygen isotope record and the times of major continental glacier growth, it is inferred that the effects of sea-level variations are modified by climatic factors that affect the intensity of continental weathering and runoff. The effects of sea-floor generation rate variations are not discernible for the Neogene. The maximum attainable stratigraphic resolution using Sr isotopes is between 0.1 and 2 m.y. for this time period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new planktic foraminiferal zonal scheme is presented for subdivision of Upper Cretaceous pelagic carbonate sequences in the circum-Antarctic region. Definition of the zones and subzones is based study of foraminifera from 13 deep-sea sections that were poleward of 50 °S paleolatitude and within the Austral Biogeographic Realm during Late Cretaceous time. The proposed biostratigraphic scheme includes seven Upper Cretaceous zones, with an average stratigraphic resolution of 4.4 m.y., and six subzones, which are all within the Maastrichtian Stage, with an average stratigraphic resolution of 1.4 m.y. The considerably higher resolution in the Maastrichtian Stage is a result of good foraminiferal preservation, availability of high quality magnetostratigraphic sections, and complete composite stratigraphic recovery in the Atlantic and Indian Ocean sectors of the Antarctic Ocean. Diminished resolution in the pre-Maastrichtian sediments of southern high latitude sections results from: (1) incomplete recovery of the middle Campanian, lower Santonian and most of the Cenomanian-lower Coniacian intervals, (2) presence of local and regional hiatuses, (3) paleobathymetric shallowing with increasing age at some sites, resulting in impoverished older planktic assemblages, and (4) poorer preservation with increasing burial depth. Cross-latitude correlation of the Campanian and older austral sequences may be improved with future drilling by recovery of sections that span existing stratigraphic gaps. Correlation of high latitude bioevents with chemostratigraphic events and their intercalibration with the magnetostratigraphy and the Geomagnetic Polarity Time Scale are needed for better chronostratigraphic resolution in existing high latitude sequences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin but discrete pelagic limestone beds intercalated among the black mudstones near the top of the extensive Mesozoic black shale sequence of the Falkland Plateau are reminiscent of similar occurrences in the central and North Atlantic and may be cyclic in nature. They have been studied via carbonate, organic carbon, stable isotope, nannofloral, and ultrastructural analysis in an attempt to determine their mode of origin. Nannofossil diversity and preservation suggest that selective dissolution or diagenesis did not produce the interbedded coccolith-rich and coccolith-poor layers, nor did blooms of opportunistic species play a role. Stable isotope measurements of carbonate do not adequately constrain the origin of the cyclicity; however, the d13C data suggest that the more nannofossil-rich intervals may be due to higher nutrient supply and overturn of deeper waters at the site rather than influxes of well-oxygenated waters into an otherwise anoxic environment. Such an explanation is in accord with the nannofloral evidence

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The isotopic ratio of strontium-87 to strontium-86 shows no detectable variation in present-day ocean water but changes slowly over millions of years. The strontium contained in carbonate shells of marine organisms records the ratio of strontium-87 to strontium-86 of the oceans at the time that the shells form. Sedimentary rocks composed of accumulated fossil carbonate shells can be dated and correlated with the use of high precision measurements of the ratio of strontium-87 to strontium-86 with a resolution that is similar to that of other techniques used in age correlation. This method may prove valuable for many geological, paleontological, paleooceanographic, and geochemical problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiolarian cherts in the Tethyan realm of Jurassic age were recently interpreted as resulting from high biosiliceous productivity along upwelling zones in subequatorial paleolatitudes the locations of which were confirmed by revised paleomagnetic estimates. However, the widespread occurrence of cherts in the Eocene suggests that cherts may not always be reliable proxies of latitude and upwelling zones. In a new survey of the global spatio-temporal distribution of Cenozoic cherts in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sediment cores, we found that cherts occur most frequently in the Paleocene and early Eocene, with a peak in occurrences at ~50 Ma that is coincident with the time of highest bottom water temperatures of the early Eocene climatic optimum (EECO) when the global ocean was presumably characterized by reduced upwelling efficiency and biosiliceous productivity. Cherts occur less commonly during the subsequent Eocene global cooling trend. Primary paleoclimatic factors rather than secondary diagenetic processes seem therefore to control chert formation. This timing of peak Eocene chert occurrence, which is supported by detailed stratigraphic correlations, contradicts currently accepted models that involve an initial loading of large amounts of dissolved silica from enhanced weathering and/or volcanism in a supposedly sluggish ocean of the EECO, followed during the subsequent middle Eocene global cooling by more vigorous oceanic circulation and consequent upwelling that made this silica reservoir available for enhanced biosilicification, with the formation of chert as a result of biosilica transformation during diagenesis. Instead, we suggest that basin-basin fractionation by deep-sea circulation could have raised the concentration of EECO dissolved silica especially in the North Atlantic, where an alternative mode of silica burial involving widespread direct precipitation and/or absorption of silica by clay minerals could have been operative in order to maintain balance between silica input and output during the upwelling-deficient conditions of the EECO. Cherts may therefore not always be proxies of biosiliceous productivity associated with latitudinally focused upwelling zones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We established a composite oxygen- and carbon-isotope stratigraphy for the Pliocene in the central South Atlantic. Monospecific samples of benthic and planktonic foraminifers from pelagic sediments from DSDP Sites 519, 521, 522, and 523 were analyzed isotopically. The resulting benthic oxygen-isotope stratigraphy allowed three paleoclimatic periods in the Pliocene to be distinguished. During the early Pliocene (5.2-3.3 Ma), low-amplitude climatic changes prevailed in a world that was less glaciated than during the Pleistocene. A net increase in global ice volume is documented in a 0.5 permil positive shift in the average 18O composition of the benthic foraminifers at 3.2 Ma. The middle Pliocene (3.3-2.5 Ma) is not only characterized by a more widespread glaciation of the Southern and Northern hemispheres but also by more drastic isotopic differences between glacial and interglacial times. A minor shift in the average 18O composition of the benthic foraminifers marks the beginning of the late Pliocene-early Pleistocene climatic period (2.5-1.1 Ma). Alternating cold and warm climate is documented in both the oxygen-isotope record and in the pelagic sediments. During cold periods, sediments with a lower CaCO3 content indicate more corrosive bottom-water conditions. More negative 13C signals in the benthic foraminifers from these sediments suggest that the Antarctic Bottom Water current was intensified in glacial times. The oxygen-isotope composition of the measured planktonic foraminifers suggests that the surface water in this part of the South Atlantic remained relatively warm during the growth of the Pliocene glaciers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcareous dinoflagellates often dominate the dinoflagellate cyst assemblage in Cretaceous to Recent oceanic sediments. However, their distribution in Paleogene sediments has scarcely been studied. The investigation of samples from DSDP Site 356 for their calcareous dinoflagellate content revealed 35 mainly long-ranging taxa. The associations and characteristic wall types (pithonelloid, oblique, radial, tangential) fluctuate quantitatively and qualitatively in distinct stratigraphic patterns. Significant shifts, primarily at the K/T boundary and the Paleocene/Eocene boundary, reflect changes in environmental conditions. Certain dinoflagellates forming calcareous cysts, such as Operculodinella operculata, were well adapted to the relatively rapid change of environmental conditions at the K/T boundary, thus blooming to dominate the carbonate flux to the ocean floor. In contrast to the stable Paleocene associations, Eocene calcareous dinoflagellates show fluctuations in relative abundances. These fluctuations can possibly be attributed to redeposition related to increased seaward transport of specimens, due to strengthened western boundary currents. The flora includes two new genera, one new species, and two new forms: Retesphaera diadema Hildebrand-Habel, Willems et Versteegh, gen. et. sp. nov., Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Sphaerodinella? tuberosa forma elongata Hildebrand-Habel, Willems et Versteegh, comb. et forma nov., Sphaerodinella? tuberosa forma variospinosa Hildebrand-Habel, Willems et Versteegh, comb. et forma nov. Three new combinations are proposed: Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Operculodinella operculata (Bramlette et Martini, 1964) Hildebrand-Habel, Willems et Versteegh, comb. nov., and Sphaerodinella? tuberosa (Kamptner, 1963) Hildebrand-Habel, Willems et Versteegh, comb. nov. The genus Operculodinella Kienel, 1994 is emended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cretaceous and Jurassic sediments 435 m thick were drilled at Site 511, in the basin province of the Falkland Plateau, during DSDP Leg 71. The calcareous Unit 3 and the clayey zeolitic Unit 4, both of Senonian age, revealed poorly preserved organic matter indicative of oxidized environments. The same characteristics prevailed for the clayey Unit 5 of Turonian to Albian age. Strictly reducing environments existed for black facies along Unit 6 of earliest Albian to Late Jurassic age and allowed the preservation of a rich organic material that is marine in origin. Besides the transition from reducing conditions in Unit 6 to oxidizing conditions in Unit 5, there are 20 meters of sediments in Cores 56-58 where detrital, nonmarine and then marine organic matter, both implying more or less reducing environments, are interlain by poorly preserved material. In the black shales of the bottom Cores 69 and 70, some nonmarine detritus is mixed with the predominantly marine organic material. An immature stage of evolution can be assigned to all of the samples studied. The chapter also undertakes a comparison with contemporaneous lithologies at adjacent Sites 327 and 330 and attempts some reconstruction of the geography of the eastern Falkland Plateau during the Mesozoic.