913 resultados para Asymmetric organocatalysis
Resumo:
This paper extends two-dimensional model of symmetric magnetostatic flux arches confined in stratified atmospheres (Zhang and Hu, 1992, 1993) to asymmetric models. Numerical results show that the flux structure is influenced greatly by the boundary condition of magnetic field, the force-free factor, the atmospheric pressure distribution and the position of footpoints (especially the width ratio of outlet to entrance, which differs from symmetric case).
Resumo:
This paper provides a new model of network formation that bridges the gap between the two benchmark models by Bala and Goyal, the one-way flow model, and the two-way flow model, and includes both as particular extreme cases. As in both benchmark models, in what we call an "asymmetric flow" network a link can be initiated unilaterally by any player with any other, and the flow through a link towards the player who supports it is perfect. Unlike those models, in the opposite direction there is friction or decay. When this decay is complete there is no flow and this corresponds to the one-way flow model. The limit case when the decay in the opposite direction (and asymmetry) disappears, corresponds to the two-way flow model. We characterize stable and strictly stable architectures for the whole range of parameters of this "intermediate" and more general model. We also prove the convergence of Bala and Goyal's dynamic model in this context.
Resumo:
This paper considers a time varying parameter extension of the Ruge-Murcia (2003, 2004) model to explore whether some of the variation in parameter estimates seen in the literature could arise from this source. A time varying value for the unemployment volatility parameter can be motivated through several means including variation in the slope of the Phillips curve or variation in the preferences of the monetary authority.We show that allowing time variation for the coefficient on the unemployment volatility parameter improves the model fit and it helps to provide an explanation of inflation bias based on asymmetric central banker preferences, which is consistent across subsamples.
Resumo:
Using a model of an optimizing monetary authority which has preferences that weigh inflation and unemployment, Ruge-Murcia (2003, 2004) finds empirical evidence that the authority has asymmetric preferences for unemployment. We extend this model to weigh inflation and output and show that the empirical evidence using these series also supports an asymmetric preference hypothesis, only in our case, preferences are asymmetric for output. We also find evidence that the monetary authority targets potential output rather than some higher output level as would be the case in an extended Barro and Gordon (1983) model.
Resumo:
Large parts of shallow seas are covered by regular seabed patterns and sand wave is one kind of these patterns. The instability of the sedimentary structures may hazard pipelines and the foundations of offshore structures. In the last decade or so, it's a focus for engineers to investigate the movement mechanism of sand waves. Previous theoretical studies of the subject have developed a general model to predict the growth and migration of sand waves, which is based on the two-dimensional vertical shallow water equations and the bed-form deformation equations. Although the relation between wave-current flow and sand bed deformation has been established, the topographic influence has not been considered in the model. In this paper some special patterns, which are asymmetric and close to the reality, are represent as the perturbed seabed and the evolution of sand waves is calculated. The combination of a steady flow induced by wind and a sinusoidal tidal flow is considered as the basic flow. Finally the relations of some parameters (grain size, etc.) and sand waves' growth and migration are discussed, and the growth rate and migration speeds of asymmetric sand waves are carried out.
Resumo:
396 : il., graf.
Resumo:
We investigate a version of the classic Colonel Blotto game in which individual battles may have different values. Two players allocate a fixed budget across battlefields and each battlefield is won by the player who allocates the most to that battlefield. The winner of the game is the player who wins the battlefields with highest total value. We focus on the case where there is one large and several small battlefields, such that a player wins if he wins the large and any one small battlefield, or all the small battlefields. We compute the mixed strategy equilibrium for these games and compare this with choices from a laboratory experiment. The equilibrium predicts that the large battlefield receives more than a proportional share of the resources of the players, and that most of the time resources should be spread over more battlefields than are needed to win the game. We find support for the main qualitative features of the equilibrium. In particular, strategies that spread resources widely are played frequently, and the large battlefield receives more than a proportional share in the treatment where the asymmetry between battlefields is stronger.
Resumo:
A broad perspective of various factors influencing alkene selenenylation has been developed by concurrent detailed analysis of key experimental and theoretical data, such as asymmetric induction, stereochemistry, relative reactivities, and comparison with that of alkene sulfenylation. Alkyl group branching a to the double bond was shown to have the greatest effect on alkene reactivity and the stereochemical outcome of corresponding addition reactions. This is in sharp contrast with other additions to alkenes, which depend more on the degree of substitution on C=C or upon substituent electronic effects. Electronic and steric effects influencing asymmetric induction, stereochemistry, regiochemistry, and relative reactivities in the addition of PhSeOTf to alkenes are compared and contrasted with those of PhSCl.
Resumo:
302 p. : gráf.
Resumo:
We investigate the enhancement of Kerr nonlinearity in an asymmetric GaAs double quantum well via Fano interference, which is caused by tunneling from the excited subband to the continuum. In our structure, owing to Fano interference, the Kerr nonlinearity can be enhanced by appropriately choosing the values of the detunings and the intensity of the pump field, while cancel the linear and nonlinear absorptions.