926 resultados para Aspergillus niger
Resumo:
Epoxides can be hydrolyzed by fungi to produce chiral diols. The first part of this thesis presents an investigation of the microbial hydrolysis of aziridines comparable in structure to epoxide biotransformation substrates. Biotransformation of the aziridines 1 -methyl-2-phenyl aziridine, 2- phenylaziridine and N-methyl-7-aza bicyclo[4.1.0] heptane was studied using Beauveria sulfurescens, Aspergillus niger and Diplodia gossypina but no evidence for enzymic hydrolysis was obtained. The hydroxylation reaction performed by the fungus Beauveria sulfurescens ATCC 7159 has been studied for many years and several models describing the hydroxylating pattern exhibited by this fungus have been proposed. The second part of this thesis presents a test of the proposed models. The ability of Beauveria sulfurescens to hydroxylate thirty potential substrates was examined, and the data suggest that none of the earlier proposed models accounts for all of the bioconversion results. A possible explanation is proposed, suggesting that there is more than one enzyme responsible for the hydroxylation reactions performed by Beauveria sulfurescens.
Resumo:
The work presented in this thesis is divided into three separate sections 4!> Each' 'section is involved wi th a different problem, however all three are involved with a microbial oxidation of a substrate~ A series of 'aryl substituted phenyl a.nd be,nzyl methyl sulphides were oxidized to the corre~pondi~g sulphoxides by 'Mo:rtierellai's'a'b'e'llina NRR.L17'S7 @ For this enzymic Qxidation, based on 180 labeled experiments, the oxygen atom is derived fr'orn the atmosphere and not from water. By way of an u~.traviolet analysis, the rates of oxidation, in terms of sulphox~ de appearance, were obtained and correlated with the Hatnmett p s~grna constants for the phenyl methyl sulphide series. A value of -0.67 was obtained and, is interpreted in terms of a mechanism of oxidation that involves an electrophilic attack on the sulphide sulphur by an enzymic ironoxygen activated complex and the conversion of the resulti!lg sulphur cation to sulphoxide. A series of alkyl phenyl selen~des have been incubated with the fu~gi, Aspergillus niger ATCC9l42, Aspergillus fO'etidus NRRL 337, MIIJisabellina NF.RLl757 and'He'lminth'osparium sp'ecies NRRL 4671 @l These fu?gi have been reported to be capable of carrying out the efficient oxidation of sulphide to sulphoxide, but in no case was there any evidence to supp'ort the occurrence of a microbialox,idation. A more extensive inves·t~gation was carried out with'M,e 'i's'a'b'e'l'l'i'na, this fu~gus was capable of oxidizing the correspondi~g sulphides to sulphoxi.de·s·$ Usi:ng a 1abel.edsubstra.te, [Methyl-l4c]-methyl phenyl selenide, the fate of this compound was invest~gated followi!lg an i'ncubation wi th Me isabellina .. BeSUldes th. e l4C-ana1YS1Q S-,'. a quant"ltta"lve selen'lum ana1Y"S1S was carried out with phenyl methyl selenide. These techniques indicate that thesel'enium was capable of enteri!1g thefu!1gal cell ef'ficiently but that s'ome metabolic cleav~ge of the seleni'um-carbon bond' may take plac'e Ie The l3c NMR shifts were assigned to the synthesized alkyl phenyl sulphides and selenides@ The final section involved the incubation ofethylben~ zene and p-e:rtr.hyltoluene wi th'M ~ 'isab'e'llina NRRL 17574b Followi~ g this incubation an hydroxylated product was isolated from the medium. The lH NMR and mass spectral data identify the products as I-phenylethanol and p-methyl-l-phenylethanol. Employi!lg a ch'iral shift re~gent,tri~ (3-heptafluorobutyl-dcamphorato)'- europium III, the enantiomeric puri ty of these products was invest~gated. An optical rotation measurement of I-phenylethanol was in ~greement with the results obtained with the chiral shift re~gen,te 'M.isabe'l'lina is capable of carryi~g out an hydroxylation of ethylbenzene and p-ethyltoluene at the ~ position.
Resumo:
Fungal metabolism of halogenated and related steroids was investigated. The fungi Aspergillus niger ATCC 9142, Curvularia lunata NRRL 2380 and Rhizopus stolonifer ATCC6227b were studied in this regard. 2l-Fluoro-, 2l-chloro, 2l-bromo- and 2l-methyl-pregn-4-ene-3,20diones were prepared and incubated with ~ niger (a C-2l-hydroxylator) in order to observe the effect of the C-2l substituent on the metabolism of these substrates. In all four cases, the C-2l substituent prevented any significant metabolism of these substrates. llB-Fluoropregn-4-ene-3,20-dione was prepared and incubated with C. lunata (an llB-hydroxylator) and ~ stolonifer (an lla-hydroxylator). With ~ lunata, the ll-fluoro- substituent prevent hydroxylation at the 11 position, but diverted it to a site remote from the fluorine atom. In contrast, with ~ stolonifer the llB-fluoro- substituent, although slowing the apparent rate of hydroxylation, did not prevent its occurrence at the 11a- position. llB-Hydroxypregn-4-ene-3,20-dione was also incubated with R. stolonifer. The llB-hydroxy-;group did not appear to have any significant effect on hydroxylation at the lla- position. The incubation of a substrate, unsaturated at a favoured site of hydroxylation with Rhizopus arrhizus ATCC 11145 provided a complex mixture of products; among them were both the a and S epoxides. The formation of these products is rationalized as arising because of the lack of regio- and stereospecificity of the hydroxylase enzyme(s) involved.
Resumo:
Toluene is converted to benzyl alcohol by the fungi Mortierella isabellina and Helminthosporium species; in the latter case, the product is further metabolized. Toluene-a -d 1 , toluene-a,a-d2, and toluene-a,a,a-d 3 have been used with Mortierellaisabellina in a series of experiments to determine both primary and secondary deuterium kinetic isotope effects for the enzymic benzylic hydroxylation reaction. The values obtained, intermolecular primary kH/kD = intramolecular p rim a r y kH r kD = 1. 0 2 + O. 0 5, and sec 0 n dar y k H I kD = 1. 37 .:!. 0.05, suggest a mechanism for the reaction involving benzylic proton removal from a radical intermediate in a non-symmetrical transition state. 2H NMR (30.7 MHz) studies using ethylbenzene-l,1-d 2 , 3 -fluoroethylbenzene-l,1-d 2 , 4 -fluoroethylbenzene-l,1-d 2 , and toluene-dB as substrates with Mortierella isabellina suggest, based on the observable differences in rates of conversion between the substrates, that the hydroxylation of hydrocarbons at the benzylic position proceeds via a one electron abstraction from the aromatic ring, giving a radical cation. A series of 1,3-oxathiolanes (eight) were incubated with Mortierella isabellina , Helminthosporium , Rhizopus arrhizus , and Aspergillus niger . Sulphoxides were obtained from Mortierella isabellina and Rhizopus arrhizus using the substrates 2-phenyl-, 2-methyl-2-phenyl-, and 2-phenyl-2-tert. butyl-l,3-oxathiolane. The relative stereochemistry of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was assigned based on lH decoupling, n.O.e, 1 and H NMR experiments. The lH NMR (200 MHz) of the methylene protons of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was used as a diagnostic standard in assigning the relative stereochemistry of 2-phenyl-l,3-oxathiolan-l-oxide and 2-phenyl-2-tert. butyl-l,3-oxathiolan-l-oxide. The sulphoxides obtained were consistent with an oxidation occurring from the opposite side of the molecule to the phenyl substituent.
Resumo:
Un papier bioactif est obtenu par la modification d’un papier en y immobilisant une ou plusieurs biomolécules. La recherche et le développement de papiers bioactifs est en plein essor car le papier est un substrat peu dispendieux qui est déjà d’usage très répandu à travers le monde. Bien que les papiers bioactifs n’aient pas connus de succès commercial depuis la mise en marche de bandelettes mesurant le taux de glucose dans les années cinquante, de nombreux groupes de recherche travaillent à immobiliser des biomolécules sur le papier pour obtenir un papier bioactif qui est abordable et possède une bonne durée de vie. Contrairement à la glucose oxidase, l’enzyme utilisée sur ces bandelettes, la majorité des biomolécules sont très fragiles et perdent leur activité très rapidement lorsqu’immobilisées sur des papiers. Le développement de nouveaux papiers bioactifs pouvant détecter des substances d’intérêt ou même désactiver des pathogènes dépend donc de découverte de nouvelles techniques d’immobilisation des biomolécules permettant de maintenir leur activité tout en étant applicable dans la chaîne de production actuelle des papiers fins. Le but de cette thèse est de développer une technique d’immobilisation efficace et versatile, permettant de protéger l’activité de biomolécules incorporées sur des papiers. La microencapsulation a été choisie comme technique d’immobilisation car elle permet d’enfermer de grandes quantités de biomolécules à l’intérieur d’une sphère poreuse permettant leur protection. Pour cette étude, le polymère poly(éthylènediimine) a été choisi afin de générer la paroi des microcapsules. Les enzymes laccase et glucose oxidase, dont les propriétés sont bien établies, seront utilisées comme biomolécules test. Dans un premier temps, deux procédures d’encapsulation ont été développées puis étudiées. La méthode par émulsion produit des microcapsules de plus petits diamètres que la méthode par encapsulation utilisant un encapsulateur, bien que cette dernière offre une meilleure efficacité d’encapsulation. Par la suite, l’effet de la procédure d’encapsulation sur l’activité enzymatique et la stabilité thermique des enzymes a été étudié à cause de l’importance du maintien de l’activité sur le développement d’une plateforme d’immobilisation. L’effet de la nature du polymère utilisé pour la fabrication des capsules sur la conformation de l’enzyme a été étudié pour la première fois. Finalement, l’applicabilité des microcapsules de poly(éthylèneimine) dans la confection de papiers bioactifs a été démontré par le biais de trois prototypes. Un papier réagissant au glucose a été obtenu en immobilisant des microcapsules contenant l’enzyme glucose oxidase. Un papier sensible à l’enzyme neuraminidase pour la détection de la vaginose bactérienne avec une plus grande stabilité durant l’entreposage a été fait en encapsulant les réactifs colorimétriques dans des capsules de poly(éthylèneimine). L’utilisation de microcapsules pour l’immobilisation d’anticorps a également été étudiée. Les avancées au niveau de la plateforme d’immobilisation de biomolécules par microencapsulation qui ont été réalisées lors de cette thèse permettront de mieux comprendre l’effet des réactifs impliqués dans la procédure de microencapsulation sur la stabilité, l’activité et la conformation des biomolécules. Les résultats obtenus démontrent que la plateforme d’immobilisation développée peut être appliquée pour la confection de nouveaux papiers bioactifs.
Resumo:
Glucoamylase from Aspergillus Niger was immobilized on montmorillonite clay (K-10) by two procedures, adsorption and covalent binding. The immobilized enzymes were characterized using XRD, surface area measurements and 27Al MAS NMR and the activity of the immobilized enzymes for starch hydrolysis was tested in a fixed bed reactor (FBR). XRD shows that enzyme intercalates into the inter-lamellar space of the clay matrix with a layer expansion up to 2.25 nm. Covalently bound glucoamylase demonstrates a sharp decrease in surface area and pore volume that suggests binding of the enzyme at the pore entrance. NMR studies reveal the involvement of octahedral and tetrahedral Al during immobilization. The performance characteristics in FBR were evaluated. Effectiveness factor (η) for FBR is greater than unity demonstrating that activity of enzyme is more than that of the free enzyme. The Michaelis constant (Km) for covalently bound glucoamylase was lower than that for free enzyme, i.e., the affinity for substrate improves upon immobilization. This shows that diffusional effects are completely eliminated in the FBR. Both immobilized systems showed almost 100% initial activity after 96 h of continuous operation. Covalent binding demonstrated better operational stability.
Resumo:
Mesoporous silica nanoparticles provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. Additionally, mesoporous silica materials can be synthesized together with other nanomaterials to create new nanocomposites, opening up a wide variety of potential applications. The ready functionalization of silica materials makes them ideal candidates for bioapplications and catalysis. These properties of mesoporous silica like high surface areas, large pore volumes and ordered pore networks allow them for higher loading of drugs or biomolecules. Comparative studies have been made to evaluate the different procedures; much of the research to date has involved quick exploration of new methods and supports. Requirements for different enzymes may vary, and specific conditions may be needed for a particular application of an immobilized enzyme such as a highly rigid support. In this endeavor, mesoporous silica materials having different pore size were synthesized and easily modified with active functional groups and were evaluated for the immobilization of enzymes. In this work, Aspergillus niger glucoamylase, Bovine liver catalase, Candida rugosa lipase were immobilized onto support by adsorption and covalent binding. The structural properties of pure and immobilized supports are analyzed by various characterization techniques and are used for different reactions of industrial applications.
Resumo:
A study was conducted to assess the effect of condensed tannins on the activity of fibrolytic enzymes from the anaerobic rumen fungus, Neocallimastix hurleyensis and a recombinant ferulic acid esterase (FAE) from the aerobic fungus Aspergillus niger. Condensed tannins were extracted from the tropical legumes Desmodium ovalifolium, Flemingia macrophylla, Leucaena leticocephala, Leucaena pallida, Calliandra calothyrsus and Clitoria fairchildiana and incubated in fungal enzyme mixtures or with the recombinant FAE. In most cases, the greatest reductions in enzyme activities were observed with tannins purified from D. ovalifolium and F macrophylla and the least with tannins from L leucocephala. Thus, whereas 40 mu g ml(-1) of condensed tannins from C. calothyrsus and L. leucocephala were needed to halve the activity of N. hurleyensis carboxymethylcellulase (CMCase), just 5.5 mu g ml(-1) of the same tannins were required to inhibit 50% of xylanase activity. The beta-D-glucosidase and beta-D-Xylosidase enzymes were less sensitive to tannin inhibition and concentrations greater than 100 mu g ml(-1) were required to reduce their activity by 50%. In other assays, the inhibitory effect of condensed tannins when added to incubation mixtures containing particulate substrates (the primary cell walls of E arundinacea) or when bound to these substrate was compared. Substrate-associated tannins were more effective in preventing fibrolytic activities than tannins added directly to incubations solutions. It was concluded that condensed tannins from tropical legumes can inhibit fibrolytic enzyme activities, although the extent of the effect was dependent on the tannin, the nature of its association with the substrate and the enzyme involved. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The growth of molds on paper containing cellulose is a frequent occurrence when the level of relative air humidity is high or when books become wet due to water leaks in libraries. The aim of this study is to differentiate the bioreceptivity of different types of book paper for different fungi. Laboratory tests were performed with strains of Aspergillus niger, Cladosporium sp., Chaetomium globosum and Trichoderma harzianum isolated from books. Four paper types were evaluated: couche Men (offset), recycled and a reference paper containing only cellulose. The tests were carried out in chambers with relative air humidity of 95% and 100%. Mold growth was greatest in the tests at 100% relative humidity. Results of stereoscopic microscopy observation showed that Cladosporium sp. grew in 74% of these samples, A. niger in 75%, T. harzianum in 72% and C. globosum in 60%. In the chambers with 95% air humidity Cladosporium sp. grew in only 9% of the samples, A. niger in 1%, T harzianum in 3% and C globosum did not grow in any sample. The most bioreceptive paper was couche and the least receptive was recycled paper. The composition of the recycled paper, however, varies depending on the types of waste materials used to make it. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The chemical composition of the essential oil of Rollinia sericea (R.E.Fr.) R.E.Fr. leaves was determined by GC and GC/MS analysis. The analysis revealed the presence mainly of sesquiterpenes: beta-elemene (10%), beta-caryophyllene (10.0%), bicyclogermacrene (9.1%), germacrene-D (8.2%), bicycloelemene (6.2%) and (Z)-nerolidol (5.3%). Rollinia sericea oil was able to inhibit the growth of both fungi Aspergillus niger (16404) and Candida albicans (ATCC 10231) as well as the Gram-positive bacterium Staphyloccocus aureus (ATCC 6538) but it was inactive against the Gram-negative bacteria Escherichia coli (ATCC 8739) and Pseudomonas aeruginosa (ATCC 9027).
Resumo:
The biotransformation of the major Piper solmsianum leaf phenylpropanoids, such as the tetrahydrofuran lignan grandisin and derivatives was investigated in the beetle Naupactus bipes as well as in the caterpillars Heraclides hectorides and Quadrus u-lucida. Analysis of fecal material indicated that metabolism occurred mainly through mono- and di-O-demethylation at para positions of 3,4,5-trimethoxyphenyl rings of tetrahydrofuran lignans during digestion by these insects. Additionally, 3-hydroxy-4,5-dimethoxycinnamyl and 3,4,5-trimethoxycinnamyl alcohols were identified in fecal extracts of N. bipes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
It is shown that metal complexes of the biodegradable ligand ethylenediaminedisuccinic acid (edds) present antimicrobial activity towards fungi and bacteria. [Cd(edds)], in particular, is more toxic than free Cd2+ to Aspergillus niger, behaving as a `Trojan Horse` in the facilitated delivery of the toxic metal into the fungus.
Resumo:
The chemical composition and the antimicrobial activity of the essential oil from Croton heterocalyx leaves were evaluated. The oil which was analyzed by GC and GUMS was found to contain germacrene D (12.5%), bicyclogermacrene (11.2%), delta-elemene (9.2%) beta-elemene (8.2%), spathulenol (6.9%), linalool (5.4%) and 1,8-cineole (3.7%) its major components. Croton. heterocalyx oil displayed a high inhibitory activity against the fungi Aspergillus niger (16404) and Candida albicans (ATCC 10231.) as well its the Gram-positive bacterium Staphylococcus aureus (ATCC 6538), hut a very weak activity was observed for the Gram-negative bacteria Escherichia coli (ATCC 8739) and Pseudomonas aeruginosa (ATCC 9027).
Resumo:
The bioelectrochemical behavior of three triphenylmethane (TPM) dyes commonly used as pH indicators, and their application in mediated electron transfer systems for glucose oxidase bioanodes in biofuel cells was investigated. Bromophenol Blue, Bromothymol Blue, Bromocresol Green were compared bio-electrochemically against two widely used mediators, benzoquinone and ferrocene carboxy aldehyde. Biochemical studies were performed in terms of enzymatic oxidation, enzyme affinity, catalytic efficiency and co-factor regeneration. The different features of the TPM dyes as mediators are determined by the characteristics in the oxidation/reduction processes studied electrochemically. The reversibility of the oxidation/reduction processes was also established through the dependence of the voltammetric peaks with the sweep rates. All three dyes showed good performances compared to the FA and BQ when evaluated in a half enzymatic fuel cell. Potentiodynamic and power response experiments showed maxima power densities of 32.8 mu W cm(-2) for ferrocene carboxy aldehyde followed by similar values obtained for TPM dyes around 30 mu W cm(-2) using glucose and mediator concentrations of 10 mmol L(-1) and 1.0 mmol L(-1), respectively. Since no mediator consumption was observed during the bioelectrochemical process, and also good redox re-cycled processes were achieved, the use of triphenylmethane dyes is considered to be promising compared to other mediated systems used with glucose oxiclase bioanodes and/or biofuel cells. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A eficácia dos meios ágar batata acidificado, ágar dicloram rosa de bengala e cloranfenicol e ágar dicloram glicerol 18% foi comparada para isolamento e quantificação de fungos a partir da análise de 54 amostras de rações comerciais secas para cães e gatos (34 para cães e 20 para gatos), produzidas por 9 empresas. A atividade de água das amostras foi quantificada, apresentando valores entre 0,45 e 0,82. Em 74% das amostras foi detectada a presença fúngica, onde, além de fungos com micélio estéril e leveduras, 23 gêneros de fungos foram identificados. As 40 amostras positivas apresentaram níveis de contaminação, com contagens variando entre 101 e 103 UFC/g. Não se verificou correlação entre atividade de água e contaminação fúngica e não se observou diferença significativa entre o número de colônias isoladas e os diferentes meios de cultivo utilizados. Apesar disto, o DG18 foi o meio que apresentou melhores resultados tanto na quantidade quanto na variedade de fungos isolados. Comparando-se os resultados obtidos com diferentes meios observa-se que os microrganismos isolados dependem dos meios de cultivo empregados. O gênero Aspergillus e a espécie Aspergillus niger foram os mais freqüentemente isolados. Isolados pertencentes a espécies potencialmente produtoras de aflatoxinas e ocratoxina A foram avaliados através do método de ágar plug-TLC. Vinte por cento dos A. flavus isolados produziram aflatoxina B1, todos os isolados de A. ochraceus produziram ocratoxina A e nenhum isolado de A. niger foi detectado como produtor de ocratoxina através do método de screening utilizado. A avaliação fúngica realizada com o emprego de 3 meios de cultura tornou claro que a detecção de fungos é dependente do meio de cultura utilizado. A Aw do alimento e do meio também devem ser consideradas para que as análises microbiológicas possam detectar ou valorar a micobiota que, efetivamente, está contaminando o alimento.