991 resultados para Approximation methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For centuries, earth has been used as a construction material. Nevertheless, the normative in this matter is very scattered, and the most developed countries, to carry out a construction with this material implies a variety of technical and legal problems. In this paper we review, in an international level, the normative panorama about earth constructions. It analyzes ninety one standards and regulations of countries all around the five continents. These standards represent the state of art that normalizes the earth as a construction material. In this research we analyze the international standards to earth construction, focusing on durability test (spray and drip erosion tests). It analyzes the differences between methods of test. Also we show all results about these tests in two types of compressed earth block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta tesis presentamos una teoría adaptada a la simulación de fenómenos lentos de transporte en sistemas atomísticos. En primer lugar, desarrollamos el marco teórico para modelizar colectividades estadísticas de equilibrio. A continuación, lo adaptamos para construir modelos de colectividades estadísticas fuera de equilibrio. Esta teoría reposa sobre los principios de la mecánica estadística, en particular el principio de máxima entropía de Jaynes, utilizado tanto para sistemas en equilibrio como fuera de equilibrio, y la teoría de las aproximaciones del campo medio. Expresamos matemáticamente el problema como un principio variacional en el que maximizamos una entropía libre, en lugar de una energía libre. La formulación propuesta permite definir equivalentes atomísticos de variables macroscópicas como la temperatura y la fracción molar. De esta forma podemos considerar campos macroscópicos no uniformes. Completamos el marco teórico con reglas de cuadratura de Monte Carlo, gracias a las cuales obtenemos modelos computables. A continuación, desarrollamos el conjunto completo de ecuaciones que gobiernan procesos de transporte. Deducimos la desigualdad de disipación entrópica a partir de fuerzas y flujos termodinámicos discretos. Esta desigualdad nos permite identificar la estructura que deben cumplir los potenciales cinéticos discretos. Dichos potenciales acoplan las tasas de variación en el tiempo de las variables microscópicas con las fuerzas correspondientes. Estos potenciales cinéticos deben ser completados con una relación fenomenológica, del tipo definido por la teoría de Onsanger. Por último, aportamos validaciones numéricas. Con ellas ilustramos la capacidad de la teoría presentada para simular propiedades de equilibrio y segregación superficial en aleaciones metálicas. Primero, simulamos propiedades termodinámicas de equilibrio en el sistema atomístico. A continuación evaluamos la habilidad del modelo para reproducir procesos de transporte en sistemas complejos que duran tiempos largos con respecto a los tiempos característicos a escala atómica. ABSTRACT In this work, we formulate a theory to address simulations of slow time transport effects in atomic systems. We first develop this theoretical framework in the context of equilibrium of atomic ensembles, based on statistical mechanics. We then adapt it to model ensembles away from equilibrium. The theory stands on Jaynes' maximum entropy principle, valid for the treatment of both, systems in equilibrium and away from equilibrium and on meanfield approximation theory. It is expressed in the entropy formulation as a variational principle. We interpret atomistic equivalents of macroscopic variables such as the temperature and the molar fractions, wich are not required to be uniform, but can vary from particle to particle. We complement this theory with Monte Carlo summation rules for further approximation. In addition, we provide a framework for studying transport processes with the full set of equations driving the evolution of the system. We first derive a dissipation inequality for the entropic production involving discrete thermodynamic forces and fluxes. This discrete dissipation inequality identifies the adequate structure for discrete kinetic potentials which couple the microscopic field rates to the corresponding driving forces. Those kinetic potentials must finally be expressed as a phenomenological rule of the Onsanger Type. We present several validation cases, illustrating equilibrium properties and surface segregation of metallic alloys. We first assess the ability of a simple meanfield model to reproduce thermodynamic equilibrium properties in systems with atomic resolution. Then, we evaluate the ability of the model to reproduce a long-term transport process in complex systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis propone una completa formulación termo-mecánica para la simulación no-lineal de mecanismos flexibles basada en métodos libres de malla. El enfoque se basa en tres pilares principales: la formulación de Lagrangiano total para medios continuos, la discretización de Bubnov-Galerkin, y las funciones de forma libres de malla. Los métodos sin malla se caracterizan por la definición de un conjunto de funciones de forma en dominios solapados, junto con una malla de integración de las ecuaciones discretas de balance. Dos tipos de funciones de forma se han seleccionado como representación de las familias interpolantes (Funciones de Base Radial) y aproximantes (Mínimos Cuadrados Móviles). Su formulación se ha adaptado haciendo sus parámetros compatibles, y su ausencia de conectividad predefinida se ha aprovechado para interconectar múltiples dominios de manera automática, permitiendo el uso de mallas de fondo no conformes. Se propone una formulación generalizada de restricciones, juntas y contactos, válida para sólidos rígidos y flexibles, siendo estos últimos discretizados mediante elementos finitos (MEF) o libres de malla. La mayor ventaja de este enfoque reside en que independiza completamente el dominio con respecto de las uniones y acciones externas a cada sólido, permitiendo su definición incluso fuera del contorno. Al mismo tiempo, también se minimiza el número de ecuaciones de restricción necesarias para la definición de uniones realistas. Las diversas validaciones, ejemplos y comparaciones detalladas muestran como el enfoque propuesto es genérico y extensible a un gran número de sistemas. En concreto, las comparaciones con el MEF indican una importante reducción del error para igual número de nodos, tanto en simulaciones mecánicas, como térmicas y termo-mecánicas acopladas. A igualdad de error, la eficiencia numérica de los métodos libres de malla es mayor que la del MEF cuanto más grosera es la discretización. Finalmente, la formulación se aplica a un problema de diseño real sobre el mantenimiento de estructuras masivas en el interior de un reactor de fusión, demostrando su viabilidad en análisis de problemas reales, y a su vez mostrando su potencial para su uso en simulación en tiempo real de sistemas no-lineales. A new complete formulation is proposed for the simulation of nonlinear dynamic of multibody systems with thermo-mechanical behaviour. The approach is founded in three main pillars: total Lagrangian formulation, Bubnov-Galerkin discretization, and meshfree shape functions. Meshfree methods are characterized by the definition of a set of shape functions in overlapping domains, and a background grid for integration of the Galerkin discrete equations. Two different types of shape functions have been chosen as representatives of interpolation (Radial Basis Functions), and approximation (Moving Least Squares) families. Their formulation has been adapted to use compatible parameters, and their lack of predefined connectivity is used to interconnect different domains seamlessly, allowing the use of non-conforming meshes. A generalized formulation for constraints, joints, and contacts is proposed, which is valid for rigid and flexible solids, being the later discretized using either finite elements (FEM) or meshfree methods. The greatest advantage of this approach is that makes the domain completely independent of the external links and actions, allowing to even define them outside of the boundary. At the same time, the number of constraint equations needed for defining realistic joints is minimized. Validation, examples, and benchmarks are provided for the proposed formulation, demonstrating that the approach is generic and extensible to further problems. Comparisons with FEM show a much lower error for the same number of nodes, both for mechanical and thermal analyses. The numerical efficiency is also better when coarse discretizations are used. A final demonstration to a real problem for handling massive structures inside of a fusion reactor is presented. It demonstrates that the application of meshfree methods is feasible and can provide an advantage towards the definition of nonlinear real-time simulation models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The segmental approach has been considered to analyze dark and light I-V curves. The photovoltaic (PV) dependence of the open-circuit voltage (Voc), the maximum power point voltage (Vm), the efficiency (?) on the photogenerated current (Jg), or on the sunlight concentration ratio (X), are analyzed, as well as other photovoltaic characteristics of multijunction solar cells. The characteristics being analyzed are split into monoexponential (linear in the semilogarithmic scale) portions, each of which is characterized by a definite value of the ideality factor A and preexponential current J0. The monoexponentiality ensures advantages, since at many steps of the analysis, one can use the analytical dependences instead of numerical methods. In this work, an experimental procedure for obtaining the necessary parameters has been proposed, and an analysis of GaInP/GaInAs/Ge triple-junction solar cell characteristics has been carried out. It has been shown that up to the sunlight concentration ratios, at which the efficiency maximum is achieved, the results of calculation of dark and light I-V curves by the segmental method fit well with the experimental data. An important consequence of this work is the feasibility of acquiring the resistanceless dark and light I-V curves, which can be used for obtaining the I-V curves characterizing the losses in the transport part of a solar cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction in hydrodynamic bearings are a major source of losses in car engines ([69]). The extreme loading conditions in those bearings lead to contact between the matching surfaces. In such conditions not only the overall geometry of the bearing is relevant, but also the small-scale topography of the surface determines the bearing performance. The possibility of shaping the surface of lubricated bearings down to the micrometer ([57]) opened the question of whether friction can be reduced by mean of micro-textures, with mixed results. This work focuses in the development of efficient numerical methods to solve thin film (lubrication) problems down to the roughness scale of measured surfaces. Due to the high velocities and the convergent-divergent geometries of hydrodynamic bearings, cavitation takes place. To treat cavitation in the lubrication problem the Elrod- Adams model is used, a mass-conserving model which has proven in careful numerical ([12]) and experimental ([119]) tests to be essential to obtain physically meaningful results. Another relevant aspect of the modeling is that the bearing inertial effects are considered, which is necessary to correctly simulate moving textures. As an application, the effects of micro-texturing the moving surface of the bearing were studied. Realistic values are assumed for the physical parameters defining the problems. Extensive fundamental studies were carried out in the hydrodynamic lubrication regime. Mesh-converged simulations considering the topography of real measured surfaces were also run, and the validity of the lubrication approximation was assessed for such rough surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

*This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant N00014-96-1-1003

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier-Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint second-order elliptic partial differential equations. In order to solve the resulting system of nonlinear equations, we exploit a (damped) Newton-GMRES algorithm. Numerical experiments demonstrating the practical performance of the proposed discontinuous Galerkin method with higher-order polynomials are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we consider the application of the generalization of the symmetric version of the interior penalty discontinuous Galerkin finite element method to the numerical approximation of the compressible Navier--Stokes equations. In particular, we consider the a posteriori error analysis and adaptive mesh design for the underlying discretization method. Indeed, by employing a duality argument (weighted) Type I a posteriori bounds are derived for the estimation of the error measured in terms of general target functionals of the solution; these error estimates involve the product of the finite element residuals with local weighting terms involving the solution of a certain dual problem that must be numerically approximated. This general approach leads to the design of economical finite element meshes specifically tailored to the computation of the target functional of interest, as well as providing efficient error estimation. Numerical experiments demonstrating the performance of the proposed approach will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recursion is a well-known and powerful programming technique, with a wide variety of applications. The dual technique of corecursion is less well-known, but is increasingly proving to be just as useful. This article is a tutorial on the four main methods for proving properties of corecursive programs: fixpoint induction, the approximation (or take) lemma, coinduction, and fusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our work on generalisations of the Becker-Doring model of cluster-formation as applied to nucleation theory, polymer growth kinetics, and the formation of upramolecular structures in colloidal chemistry. One valuable tool in analysing mathematical models of these systems has been the coarse-graining approximation which enables macroscopic models for observable quantities to be derived from microscopic ones. This permits assumptions about the detailed molecular mechanisms to be tested, and their influence on the large-scale kinetics of surfactant self-assembly to be elucidated. We also summarise our more recent results on Becker-Doring systems, notably demonstrating that cross-inhibition and autocatalysis can destabilise a uniform solution and lead to a competitive environment in which some species flourish at the expense of others, phenomena relevant in models of the origins of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the hydrodynamic stability problem associated with the incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the eigenvalue problem in channel and pipe geometries. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to eigenvalue/stability problems. The underlying analysis consists of constructing both a dual eigenvalue problem and a dual problem for the original base solution. In this way, errors stemming from both the numerical approximation of the original nonlinear flow problem, as well as the underlying linear eigenvalue problem are correctly controlled. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.