648 resultados para Appareil de Golgi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is reduced in pep12Δ and vps34Δ, two mutants that block Vps10p transport from the TGN to the endosome. However, Vps10p sorting is independent of Apl2p. Interestingly, a Vps10CtΔp mutant lacking its C-terminal cytoplasmic domain, the portion of the receptor responsible for carboxypeptidase Y sorting, is also coimmunoprecipitated with clathrin. Our results suggest that CCVs mediate Vps10p transport from the TGN to the endosome independent of direct interactions between Vps10p and clathrin coats. The Vps10p C-terminal domain appears to play a principal role in retrieval of Vps10p from the prevacuolar compartment rather than in sorting from the TGN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylcholine and phosphatidylethanolamine are the most abundant phospholipids in eukaryotic cells and thus have major roles in the formation and maintenance of vesicular membranes. In yeast, diacylglycerol accepts a phosphocholine moiety through a CPT1-derived cholinephosphotransferase activity to directly synthesize phosphatidylcholine. EPT1-derived activity can transfer either phosphocholine or phosphoethanolamine to diacylglcyerol in vitro, but is currently believed to primarily synthesize phosphatidylethanolamine in vivo. In this study we report that CPT1- and EPT1-derived cholinephosphotransferase activities can significantly overlap in vivo such that EPT1 can contribute to 60% of net phosphatidylcholine synthesis via the Kennedy pathway. Alterations in the level of diacylglycerol consumption through alterations in phosphatidylcholine synthesis directly correlated with the level of SEC14-dependent invertase secretion and affected cell viability. Administration of synthetic di8:0 diacylglycerol resulted in a partial rescue of cells from SEC14-mediated cell death. The addition of di8:0 diacylglycerol increased di8:0 diacylglycerol levels 20–40-fold over endogenous long-chain diacylglycerol levels. Di8:0 diacylglcyerol did not alter endogenous phospholipid metabolic pathways, nor was it converted to di8:0 phosphatidic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phocein is a widely expressed, highly conserved intracellular protein of 225 amino acids, the sequence of which has limited homology to the ς subunits from clathrin adaptor complexes and contains an additional stretch bearing a putative SH3-binding domain. This sequence is evolutionarily very conserved (80% identity between Drosophila melanogaster and human). Phocein was discovered by a yeast two-hybrid screen using striatin as a bait. Striatin, SG2NA, and zinedin, the three mammalian members of the striatin family, are multimodular, WD-repeat, and calmodulin-binding proteins. The interaction of phocein with striatin, SG2NA, and zinedin was validated in vitro by coimmunoprecipitation and pull-down experiments. Fractionation of brain and HeLa cells showed that phocein is associated with membranes, as well as present in the cytosol where it behaves as a protein complex. The molecular interaction between SG2NA and phocein was confirmed by their in vivo colocalization, as observed in HeLa cells where antibodies directed against either phocein or SG2NA immunostained the Golgi complex. A 2-min brefeldin A treatment of HeLa cells induced the redistribution of both proteins. Immunocytochemical studies of adult rat brain sections showed that phocein reactivity, present in many types of neurons, is strictly somato-dendritic and extends down to spines, just as do striatin and SG2NA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During skeletal muscle differentiation, the Golgi complex (GC) undergoes a dramatic reorganization. We have now visualized the differentiation and fusion of living myoblasts of the mouse muscle cell line C2, permanently expressing a mannosidase-green fluorescent protein (GFP) construct. These experiments reveal that the reorganization of the GC is progressive (1–2 h) and is completed before the cells start fusing. Fluorescence recovery after photobleaching (FRAP), immunofluorescence, and immunogold electron microscopy demonstrate that the GC is fragmented into elements localized near the endoplasmic reticulum (ER) exit sites. FRAP analysis and the ER relocation of endogenous GC proteins by phospholipase A2 inhibitors demonstrate that Golgi-ER cycling of resident GC proteins takes place in both myoblasts and myotubes. All results support a model in which the GC reorganization in muscle reflects changes in the Golgi-ER cycling. The mechanism is similar to that leading to the dispersal of the GC caused, in all mammalian cells, by microtubule-disrupting drugs. We propose that the trigger for the dispersal results, in muscle, from combined changes in microtubule nucleation and ER exit site localization, which place the ER exit sites near microtubule minus ends. Thus, changes in GC organization that initially appear specific to muscle cells, in fact use pathways common to all mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of the small ras-like GTPase Arf1p requires the action of guanine nucleotide exchange factors. Four Arf1p guanine nucleotide exchange factors have been identified in yeast: Sec7p, Syt1p, Gea1p, and its homologue Gea2p. We identified GEA2 as a multicopy suppressor of a sec21-3 temperature-sensitive mutant. SEC21 encodes the γ-subunit of coatomer, a heptameric protein complex that together with Arf1p forms the COPI coat. GEA1 and GEA2 have at least partially overlapping functions, because deletion of either gene results in no obvious phenotype, whereas the double null mutant is inviable. Conditional mutants defective in both GEA1 and GEA2 accumulate endoplasmic reticulum and Golgi membranes under restrictive conditions. The two genes do not serve completely overlapping functions because a Δgea1 Δarf1 mutant is not more sickly than a Δarf1 strain, whereas Δgea2 Δarf1 is inviable. Biochemical experiments revealed similar distributions and activities for the two proteins. Gea1p and Gea2p exist both in membrane-bound and in soluble forms. The membrane-bound forms, at least one of which, Gea2p, can be visualized on Golgi structures, are both required for vesicle budding and protein transport from the Golgi to the endoplasmic reticulum. In contrast, Sec7p, which is required for protein transport within the Golgi, is not required for retrograde protein trafficking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast phosphatidylinositol-transfer protein (Sec14p) is essential for Golgi secretory function and cell viability. This requirement of Sec14p is relieved by genetic inactivation of the cytidine diphosphate-choline pathway for phosphatidycholine (PtdCho) biosynthesis. Standard phenotypic analyses indicate that inactivation of the phosphatidylethanolamine (PtdEtn) pathway for PtdCho biosynthesis, however, does not rescue the growth and secretory defects associated with Sec14p deficiency. We now report inhibition of choline uptake from the media reveals an efficient “bypass Sec14p” phenotype associated with PtdEtn-methylation pathway defects. We further show that the bypass Sec14p phenotype associated with PtdEtn-methylation pathway defects resembles other bypass Sec14p mutations in its dependence on phospholipase D activity. Finally, we find that increased dosage of enzymes that catalyze phospholipase D-independent turnover of PtdCho, via mechanisms that do not result in a direct production of phosphatidic acid or diacylglycerol, effect a partial rescue of sec14-1ts-associated growth defects. Taken together, these data support the idea that PtdCho is intrinsically toxic to yeast Golgi secretory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A family of related proteins in yeast Saccharomyces cerevisiae is known to have in vitro GTPase-activating protein activity on the Rab GTPases. However, their in vivo function remains obscure. One of them, Gyp1p, acts on Sec4p, Ypt1p, Ypt7p, and Ypt51p in vitro. Here, we present data to reveal its in vivo substrate and the role that it plays in the function of the Rab GTPase. Red fluorescent protein-tagged Gyp1p is concentrated on cytoplasmic punctate structures that largely colocalize with a cis-Golgi marker. Subcellular fractionation of a yeast lysate confirmed that Gyp1p is peripherally associated with membranes and that it cofractionates with Golgi markers. This localization suggests that Gyp1p may only act on Rab GTPases on the Golgi. A gyp1Δ strain displays a growth defect on synthetic medium at 37°C. Overexpression of Ypt1p, but not other Rab GTPases, strongly inhibits the growth of gyp1Δ cells. Conversely, a partial loss-of-function allele of YPT1, ypt1-2, can suppress the growth defect of gyp1Δ cells. Furthermore, deletion of GYP1 can partially suppress growth defects associated with mutants in subunits of transport protein particle complex, a complex that catalyzes nucleotide exchange on Ypt1p. These results establish that Gyp1p functions on the Golgi as a negative regulator of Ypt1p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 ± 0.44%/min for ER → Golgi, and 7.68 ± 1.94%/min for Golgi → ER transport, revealing a half-time of 113 ± 70 min for leaving the ER and 1.67 ± 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF4− treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uridine 5′-diphosphate-glucose (UDP-Glc) is transported into the lumen of the Golgi cisternae, where is used for polysaccharide biosynthesis. When Golgi vesicles were incubated with UDP-[3H]Glc, [3H]Glc was rapidly transferred to endogenous acceptors and UDP-Glc was undetectable in Golgi vesicles. This result indicated that a uridine-containing nucleotide was rapidly formed in the Golgi vesicles. Since little is known about the fate of the nucleotide derived from UDP-Glc, we analyzed the metabolism of the nucleotide moiety of UDP-Glc by incubating Golgi vesicles with [α-32P]UDP-Glc, [β-32P]UDP-Glc, and [3H]UDP-Glc and identifying the resulting products. After incubation of Golgi vesicles with these radiolabeled substrates we could detect only uridine 5′-monophosphate (UMP) and inorganic phosphate (Pi). UDP could not be detected, suggesting a rapid hydrolysis of UDP by the Golgi UDPase. The by-products of UDP hydrolysis, UMP and Pi, did not accumulate in the lumen, indicating that they were able to exit the Golgi lumen. The exit of UMP was stimulated by UDP-Glc, suggesting the presence of a putative UDP-Glc/UMP antiporter in the Golgi membrane. However, the exit of Pi was not stimulated by UDP-Glc, suggesting that the exit of Pi occurs via an independent membrane transporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, the lack of a method for inducing plant cells and their Golgi stacks to differentiate in a synchronous manner has made it difficult to characterize the nature and extent of Golgi retailoring in biochemical terms. Here we report that auxin deprivation can be used to induce a uniform population of suspension-cultured tobacco (Nicotiana tabacum cv BY-2) cells to differentiate synchronously during a 4-d period. Upon removal of auxin, the cells stop dividing, undergo elongation, and differentiate in a manner that mimics the formation of slime-secreting epidermal and peripheral root-cap cells. The morphological changes to the Golgi apparatus include a proportional increase in the number of trans-Golgi cisternae, a switch to larger-sized secretory vesicles that bud from the trans-Golgi cisternae, and an increase in osmium staining of the secretory products. Biochemical alterations include an increase in large, fucosylated, mucin-type glycoproteins, changes in the types of secreted arabinogalactan proteins, and an increase in the amounts and types of molecules containing the peripheral root-cap-cell-specific epitope JIM 13. Taken together, these findings support the hypothesis that auxin deprivation can be used to induce tobacco BY-2 cells to differentiate synchronously into mucilage-secreting cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crucial step in lysosomal biogenesis is catalyzed by “uncovering” enzyme (UCE), which removes a covering N-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: 488YHPL and C-terminal 511NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) is the only protein known to bind specifically to the group of oxysterols with potent effects on cholesterol homeostasis. Although the function of OSBP is currently unknown, an important role is implicated by the existence of multiple homologues in all eukaryotes so far examined. OSBP and a subset of homologues contain pleckstrin homology (PH) domains. Such domains are responsible for the targeting of a wide range of proteins to the plasma membrane. In contrast, OSBP is a peripheral protein of Golgi membranes, and its PH domain targets to the trans-Golgi network of mammalian cells. In this article, we have characterized Osh1p, Osh2p, and Osh3p, the three homologues of OSBP in Saccharomyces cerevisiae that contain PH domains. Examination of a green fluorescent protein (GFP) fusion to Osh1p revealed a striking dual localization with the protein present on both the late Golgi, and in the recently described nucleus-vacuole (NV) junction. Deletion mapping revealed that the PH domain of Osh1p specified targeting to the late Golgi, and an ankyrin repeat domain targeting to the NV junction, the first such targeting domain identified for this structure. GFP fusions to Osh2p and Osh3p showed intracellular distributions distinct from that of Osh1p, and their PH domains appear to contribute to their differing localizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the mitogen-activated protein kinase kinase (MKK)/extracellular-activated protein kinase (ERK) pathway in mitotic Golgi disassembly is controversial, in part because Golgi-localized targets have not been identified. We observed that Golgi reassembly stacking protein 55 (GRASP55) was phosphorylated in mitotic cells and extracts, generating a mitosis-specific phospho-epitope recognized by the MPM2 mAb. This phosphorylation was prevented by mutation of ERK consensus sites in GRASP55. GRASP55 mitotic phosphorylation was significantly reduced, both in vitro and in vivo, by treatment with U0126, a potent and specific inhibitor of MKK and thus ERK activation. Furthermore, ERK2 directly phosphorylated GRASP55 on the same residues that generated the MPM2 phospho-epitope. These results are the first demonstration of GRASP55 mitotic phosphorylation and indicate that the MKK/ERK pathway directly phosphorylates the Golgi during mitosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sphingomyelin- and cholesterol-enriched microdomains can be isolated as detergent-resistant membranes from total cell extracts (total-DRM). It is generally believed that this total-DRM represents microdomains of the plasma membrane. Here we describe the purification and detailed characterization of microdomains from Golgi membranes. These Golgi-derived detergent-insoluble complexes (GICs) have a low buoyant density and are highly enriched in lipids, containing 25% of total Golgi phospholipids including 67% of Golgi-derived sphingomyelin, and 43% of Golgi-derived cholesterol. In contrast to total-DRM, GICs contain only 10 major proteins, present in nearly stoichiometric amounts, including the α- and β-subunits of heterotrimeric G proteins, flotillin-1, caveolin, and subunits of the vacuolar ATPase. Morphological data show a brefeldin A-sensitive and temperature-sensitive localization to the Golgi complex. Strikingly, the stability of GICs does not depend on its membrane environment, because, after addition of brefeldin A to cells, GICs can be isolated from a fused Golgi-endoplasmic reticulum organelle. This indicates that GIC microdomains are not in a dynamic equilibrium with neighboring membrane proteins and lipids. After disruption of the microdomains by cholesterol extraction with cyclodextrin, a subcomplex of several GIC proteins including the B-subunit of the vacuolar ATPase, flotillin-1, caveolin, and p17 could still be isolated by immunoprecipitation. This indicates that several of the identified GIC proteins localize to the same microdomains and that the microdomain scaffold is not required for protein interactions between these GIC proteins but instead might modulate their affinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the “ear” domain of the clathrin adaptor AP-1 γ subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Δ), the major Gga protein, accentuates growth and α-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Δ or a deletion of the AP-1 β subunit gene (apl2Δ) alone are phenotypically normal, but cells carrying both gga2Δ and apl2Δ are defective in growth, α-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes.