407 resultados para Apofisite tibial
Resumo:
A unique case of a collegiate athlete who suffered an anterior cruciate ligament injury leading to the formation of a synovial cyst is described. The cyst, localized over the tibial tunnel, resulted from irritation caused by the removal of interference screws.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Background: For tibial fractures, the decision to fix a concomitant fibular fracture is undertaken on a case-by-case basis. To aid in this clinical decision-making process, we investigated whether loss of integrity of the fibula significantly destabilises midshaft tibial fractures, whether fixation of the fibula restores stability to the tibia, and whether removal of the fibula and interosseous membrane for expediency in biomechanical testing significantly influences tibial interfragmentary mechanics. Methods: Tibia/fibula pairs were harvested from six cadaveric donors with the interosseous membrane intact. A tibial osteotomy fracture was fixed by reamed intramedullary (IM) nailing. Axial, torsion, bending, and shear tests were completed for four models of fibular involvement: intact fibula, osteotomy fracture, fibular plating, and resected fibula and interosseous membrane. Findings: Overall construct stiffness decreased slightly with fibular osteotomy compared to intact bone, but this change was not statistically significant. Under low loads, the influence of the fibula on construct stability was only statistically significant in torsion (large effect size). Fibular plating stiffened the construct slightly, but this change was not statistically significant compared to the fibular osteotomy case. Complete resection of the fibula and interosseous membrane significantly decreased construct torsional stiffness only (large effect size). Interpretation: These results suggest that fixation of the fibula may not contribute significantly to the stability of diaphyseal tibial fractures and should not be undertaken unless otherwise clinically indicated. For testing purposes, load-sharing through the interosseous membrane contributes significantly to overall construct mechanics, especially in torsion, and we recommend preservation of these structures when possible.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Uma das causas de insucesso nas artroplastias do joelho está relacionada com a dor que os doentes sentem a curto e/ou longo prazo. A dor tanto pode ser devida a infecção ou descolamento, como pode estar presente sem qualquer um destes factores, provocando a substituição da prótese. Existem estudos de origem clínica que relatam uma percentagem, que se pode considerar relevante, de dor na extremidade da haste, quer na zona da tíbia quer no fémur [1-3]. A nível ósseo, a cintigrafia pode mostrar as alterações metabólicas locais, antes de qualquer tradução radiográfica [4]. O aumento da carga, a nível ósseo, estimula localmente a actividade osteoblástica [4]. Esta estimulação pode originar dor local, como demonstrado num caso clínico por Fonseca et al. [5], referente a um doente com dor na extremidade da haste de uma prótese do joelho e onde a cintigrafia com Tc 99m [5] mostrava uma actividade celular mais intensa em torno da extremidade. O presente estudo teve como objectivo verificar até que ponto é possível estabelecer uma relação entre o sintoma dor e o comportamento biomecânico da haste da prótese do joelho e, particularmente, na sua extremidade. A análise relativa ao nível de tensões no osso, em torno da haste tibial, comparativamente ao valor do osso intacto para o mesmo tipo de carga e localização, foi realizada utilizando a aplicação de análise estrutural HyperWorks (Altair Engineering Inc.). Um estudo posterior, relativo à forma e material da extremidade da haste levou à conclusão de que é possível uma melhor uniformização das tensões no osso, podendo-se desta forma aproximar às tensões fisiológicas. Neste sentido, a forma geometral da haste deverá ser objecto de optimização, que poderá incluir materiais poliméricos, de menor rigidez, na ponta distal do implante.
Resumo:
The fracture healing process is modulated by the mechanical environment created by imposed loads and motion between the bone fragments. Contact between the fragments obviously results in a significantly different stress and strain environment to a uniform fracture gap containing only soft tissue (e.g. haematoma). The assumption of the latter in existing computational models of the healing process will hence exaggerate the inter-fragmentary strain in many clinically-relevant cases. To address this issue, we introduce the concept of a contact zone that represents a variable degree of contact between cortices by the relative proportions of bone and soft tissue present. This is introduced as an initial condition in a two-dimensional iterative finite element model of a healing tibial fracture, in which material properties are defined by the volume fractions of each tissue present. The algorithm governing the formation of cartilage and bone in the fracture callus uses fuzzy logic rules based on strain energy density resulting from axial compression. The model predicts that increasing the degree of initial bone contact reduces the amount of callus formed (periosteal callus thickness 3.1mm without contact, down to 0.5mm with 10% bone in contact zone). This is consistent with the greater effective stiffness in the contact zone and hence, a smaller inter-fragmentary strain. These results demonstrate that the contact zone strategy reasonably simulates the differences in the healing sequence resulting from the closeness of reduction.
Resumo:
BACKGROUND: The temporomandibular joint (TMJ) cartilage consists of condylar cartilage and disc and undergoes continuous remodeling throughout post-natal life. To maintain the integrity of the TMJ cartilage, anti-angiogenic factors play an important role during the remodeling process. In this study, we investigated the expression of the anti-angiogenic factor, chondromodulin- 1 (ChM-1), in TMJ cartilage and evaluate its potential role in TMJ remodeling. METHODS: Eight TMJ specimens were collected from six 4-month-old Japanese white rabbits. Safranin-O staining was performed to determine proteoglycan content. ChM-1 expression in TMJ condylar cartilage and disc was determined by immunohistochemistry. Three human perforated disc tissue samples were collected for investigation of ChM-1 and vascular endothelial growth factor (VEGF) distribution in perforated TMJ disc. RESULTS: Safranin-O stained weakly in TMJ compared with tibial articular and epiphyseal cartilage. In TMJ, ChM-1 was expressed in the proliferative and hypertrophic zone of condylar cartilage and chondrocyte-like cells in the disc. No expression of ChM-1 was observed in osteoblasts and subchondral bone. ChM-1 and VEGF were both similarly expressed in perforated disc tissues. CONCLUSIONS: ChM-1 may play a role in the regulation of TMJ remodeling by preventing blood vessel invasion of the cartilage, thereby maintaining condylar cartilage and disc integrity.
Resumo:
Recently, research has focused on bone marrow derived multipotent mesenchymal precursor cells (MPC) for their potential clinical use in bone engineering. Prior to clinical application, MPC-based treatment concepts need to be evaluated in preclinical, immunocompetent, large animal models. Sheep in particular are considered a valid model for orthopaedic and trauma related research. However, ovine MPC and their osteogenic potential remain poorly characterized. In the present study, ex vivo expanded MPC isolated from ovine bone marrow proliferated at a higher rate than osteoblasts (OB) derived from tibial compact bone as assessed using standard 2D culture. MPC expressed the respective phenotypic profile typical for different mesenchymal cell populations (CD14-/CD31-/CD45- /CD29+/CD44+/CD166+) and showed a multilineage differentiation potential. When compared to OB, MPC had a higher mineralization potential under standard osteogenic culture conditions and expressed typical markers such as osteocalcin, osteonectin and type I collagen at the mRNA and protein level. After 4 weeks in 3D culture, MPC constructs demonstrated higher cell density and mineralization, whilst cell viability on the scaffolds was assessed >90%. Cells displayed a spindle-like morphology and formed an interconnected network. Implanted subcutaneously into NOD/SCID mice on type I collagen coated polycaprolactone-tricalciumphosphate (mPCL-TCP) scaffolds, MPC presented a higher developmental potential than osteoblasts. In summary, this study provides a detailed in vitro characterisation of ovine MPC from a bone engineering perspective and suggests that MPC provide promising means for future bone disease related treatment applications.
Resumo:
Diachasmimorpha kraussii is an endoparasitoid of larval dacine fruit flies. To date the only host preference study done on D. kraussii has used fruit flies from outside its native range (Australia, Papua New Guinea, Solomon Islands). In contrast, this paper investigates host preference for four fly species (Bactrocera cacuminata, B. cucumis, B. jarvisi and B. tryoni) which occur sympatrically with the wasp in the Australian component of the native range. Diachasmimorpha kraussii oviposition preference, host suitability (parasitism rate, number of progeny, sex ratio), and offspring performance measures (body length, hind tibial length, developmental time) were investigated with respect to the four fly species in the laboratory in both no-choice and choice situations. The parasitoid accepted all four fruit fly species for oviposition in both no-choice and choice tests; however, adult wasps only emerged from B. jarvisi and B. tryoni. Through dissection, it was demonstrated that parasitoid eggs were encapsulated in both B. cacuminata and B. cucumis. Between the two suitable hosts, measurements of oviposition preference, host suitability and offspring performance measurements either did not vary significantly, or varied in an inconsistent manner. Based on our results, and a related study by other authors, we conclude that D. krausii, at the point of oviposition, cannot discriminate between physiologically suitable and unsuitable hosts.
Resumo:
In this sheep study, we investigated the influence of fixation stability on the temporal and spatial distribution of tissues in the fracture callus. As the initial mechanical conditions have been cited as being especially important for the healing outcome, it was hypothesized that differences in the path of healing would be seen as early as the initial phase of healing. ----- ----- Sixty-four sheep underwent a mid-shaft tibial osteotomy that was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture calluses were analyzed using radiological, biomechanical and histological techniques. Statistical comparison between the groups was performed using the Mann–Whitney U test for unpaired non-parametric data. ----- ----- In the callus of the tibia treated with semi-rigid fixation, remnants of the fracture haematoma remained present for longer, although new periosteal bone formation during early healing was similar in both groups. The mechanical competence of the healing callus at 6 weeks was inferior compared to tibiae treated with rigid fixation. Semi-rigid fixation resulted in a larger cartilage component of the callus, which persisted longer. Remodeling processes were initiated earlier in the rigid group, while new bone formation continued throughout the entire investigated period in the semi-rigid group. ----- ----- In this study, evidence is provided that less rigid fixation increased the time required for healing. The process of intramembranous ossification appeared during the initial stages of healing to be independent of mechanical stability. However, the delay in healing was related to a prolonged chondral phase.
Resumo:
During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification.
Resumo:
Secondary fracture healing in long bones leads to the successive formation of intricate patterns of tissues in the newly formed callus. The main aim of this work was to quantitatively describe the topology of these tissue patterns at different stages of the healing process and to generate averaged images of tissue distribution. This averaging procedure was based on stained histological sections (2, 3, 6, and 9 weeks post-operatively) of 64 sheep with a 3 mm tibial mid-shaft osteotomy, stabilized either with a rigid or a semi-rigid external fixator. Before averaging, histological images were sorted for topology according to six identified tissue patterns. The averaged images were obtained for both fixation types and the lateral and medial side separately. For each case, the result of the averaging procedure was a collection of six images characterizing quantitatively the progression of the healing process. In addition, quantified descriptions of the newly formed cartilage and the bone area fractions (BA/TA) of the bony callus are presented. For all cases, a linear increase in the BA/TA of the bony callus was observed. The slope was greatest in the case of the most rigid stabilization and lowest in the case of the least stiff. This topological description of the progression of bone healing will allow quantitative validation (or falsification) of current mechano-biological theories.
Resumo:
Bone healing is known to occur through the successive formation and resorption of various tissues with different structural and mechanical properties. To get a better insight into this sequence of events, we used environmental scanning electron microscopy (ESEM) together with scanning small-angle X-ray scattering (sSAXS) to reveal the size and orientation of bone mineral particles within the regenerating callus tissues at different healing stages (2, 3, 6, and 9 weeks). Sections of 200 µm were cut from embedded blocks of midshaft tibial samples in a sheep osteotomy model with an external fixator. Regions of interest on the medial side of the proximal fragment were chosen to be the periosteal callus, middle callus, intercortical callus, and cortex. Mean thickness (T parameter), degree of alignment (ρ parameter), and predominant orientation (ψ parameter) of mineral particles were deduced from resulting sSAXS patterns with a spatial resolution of 200 µm. 2D maps of T and ρ overlapping with ESEM images revealed that the callus formation occurred in two waves of bone formation, whereby a highly disordered mineralized tissue was deposited first, followed by a bony tissue with more lamellar appearance in the ESEM and where the mineral particles were more aligned, as revealed by sSAXS. As a consequence, degree of alignment and mineral particle size within the callus increased with healing time, whereas at any given moment there were structural gradients, for example, from periosteal toward the middle callus.