943 resultados para Antioxidative enzyme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino acid sequences of proteinaceous proteinase inhibitors have been extensively analysed for deriving information regarding the molecular evolution and functional relationship of these proteins. These sequences have been grouped into several well defined families. It was found that the phylogeny constructed with the sequences corresponding to the exposed loop responsible for inhibition has several branches that resemble those obtained from comparisons using the entire sequence. The major branches of the unrooted tree corresponded to the families to which the inhibitors belonged. Further branching is related to the enzyme specificity of the inhibitor. Examination of the active site loop sequences of trypsin inhibitors revealed that there are strong preferences for specific amino acids at different positions of the loop. These preferences are inhibitor class specific. Inhibitors active against more than one enzyme occur within a class and confirm to class specific sequence in their loops. Hence, only a few positions in the loop seem to determine the specificity. The ability to inhibit the same enzyme by inhibitors that belong to different classes appears to be a result of convergent evolution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase from mammalian and bacterial sources is a pyridoxal-5'-phosphate-containing enzyme, but the requirement of pyridoxal-5'-phosphate for the activity of the enzyme from plant sources is not clear. The specific activity of serine hydroxymethyltransferase isolated from mung bean (Vigna radiata) seedlings in the presence and absence of pyridoxal-5'-phosphate was comparable at every step of the purification procedure. The mung bean enzyme did not show the characteristic visible absorbance spectrum of pyridoxal-5'-phosphate protein. Unlike the enzymes from sheep, monkey, and human liver, which were converted to the apoenzyme upon treatment with L-cysteine and dialysis, the mung bean enzyme similarly treated was fully active. Additional evidence in support of the suggestion that pyridoxal-5'-phosphate may not be required for the mung bean enzyme was the observation that pencillamine, a well-known inhibitor of pyridoxal-5'-phosphate enzymes, did not perturb the enzyme spectrum or inhibit the activity of mung bean serine hydroxymethyltransferase. The sheep liver enzyme upon interaction with O-amino-D-serine gave a fluorescence spectrum with an emission maximum at 455 nm when excited at 360 nm. A 100-fold higher concentration of mung bean enzyme-O-amino-D-serine complex did not yield a fluorescence spectrum. The following observations suggest that pyridoxal-5'-phosphate normally present as a coenzyme in serine hydroxymethyltransferase was probably replaced in mung bean serine hydroxymethyltransferase by a covalently bound carbonyl group: (a) inhibiton by phenylhydrazine and hydroxylamine, which could not be reversed by dialysis and or addition of pyridoxal-5'-phosphate; (b) irreversible inactivation by sodium borohydride; (c) a spectrum characteristic of a phenylhydrazone upon interaction with phenylhydrazine; and (d) the covalent labeling of the enzyme with substrate/product serine and glycine upon reduction with sodium borohydride. These results indicate that in mung bean serine hydroxymethyltransferase, a covalently bound carbonyl group has probably replaced the pyridoxal-5'-phosphate that is present in the mammalian and bacterial enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and rapid affinity chromatographic method for the isolation of aspartate transcarbamylase from germinated seedlings of mung bean (Phaseolus aureus) was developed. A partially purified preparation of the enzyme was chromatographed on an affinity column containing aspartate linked to CNBr-activated Sepharose 4B. Aspartate transcarbamylase was specifically eluted from the column with 10 mImage aspartate or 0.5 Image KCl. The enzyme migrated as a single sharp band during disc electrophoresis at pH 8.6 on polyacrylamide gels. Electrophoresis of the sodium dodecyl sulfate-treated enzyme showed two distinct protein bands, suggesting that the mung bean aspartate transcarbamylase was made up of nonidentical subunits. Like the enzyme purified by conventional procedures, this enzyme preparation also exhibited positive homotropic interactions with carbamyl phosphate and negative heterotropic interactions with UMP. This method was extended to the purification of aspartate transcarbamylase from Lathyrus sativus, Eleucine coracona, and Trigonella foenum graecum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM−1 s−1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s−1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) catalyzes the conversion of angiotensin I (Ang I) to angiotensin II (Ang II). ACE also cleaves the terminal dipeptide of vasodilating hormone bradykinin (a nonapeptide) to inactivate this hormone. Therefore, inhibition of ACE is generally used as one of the methods for the treatment of hypertension. `Oxidative stress' is another disease state caused by an imbalance in the production of oxidants and antioxidants. A number of studies suggest that hypertension and oxidative stress are interdependent. Therefore, ACE inhibitors having antioxidant property are considered beneficial for the treatment of hypertension. As selenium compounds are known to exhibit better antioxidant behavior than their sulfur analogues, we have synthesized a number of selenium analogues of captopril, an ACE inhibitor used as an antihypertensive drug. The selenium analogues of captopril not only inhibit ACE activity but also effectively scavenge peroxynitrite, a strong oxidant found in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of beta-lactam antibiotics using zinc-containing metallo-beta-lactamases (m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins, and imipenem. It is shown in this paper that the cephalosporins having heterocyclic - SR side chains are less prone to m beta l-mediated hydrolysis than the antibiotics that do not have such side chains. This is partly due to the inhibition of enzyme activity by the thione moieties eliminated during hydrolysis. When the enzymatic hydrolysis of oxacillin was carried out in the presence of heterocyclic thiones such as MU, MDT, DMETT, and MMA, the catalytic activity of the enzyme was inhibited significantly by these compounds. Although the heterocyclic - SR moieties eliminated from the beta-lactams upon hydrolysis undergo a rapid tautomerism between thione and thiol forms, these compounds act as thiolate ligands toward zinc(II) ions. The structural characterization of two model tetranuclear zinc(II) thiolate complexes indicates that the -SR side chains eliminated from the antibiotics may interact with the zinc(II) metal center of m beta l through their sulfur atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen terrestrial psychrotrophic bacteria from Antarctica were screened for the presence of a thermolabile ribonuclease (RNAase-HL). The enzyme was detected in three isolates of Pseudomonas fluorescens and one isolate of Pseudomonas syringae. It was purified from one P. Fluorescens isolate and the molecular mass of the enzyme as determined by SDS-PAGE was 16 kDa. RNAase-HL exhibited optimum activity around 40 degrees C at pH 7.4. It could hydrolyse Escherichia coli RNA and the synthetic substrates poly(A), poly(C), poly(U) and poly(A-U). Unlike the crude RNAase from mesophilic P. Fluorescens and pure bovine pancreatic RNAase A which were active even at 65 degrees C, RNAase-HL was totally and irreversibly inactivated at 65 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type III restriction endonuclease EcoPI, coded by bacteriophage Fl, cleaves unmodified DNA in the presence of ATP and magnesium ions. We show that purified EcoPI restriction enzyme fails to cleave DNA in the presence of non-hydrolyzable ATP analogs. More importantly, this study demonstrates that EcoPI restriction enzyme has an inherent ATPase activity, and ATP hydrolysis is necessary for DNA cleavage. Furthermore, we show that the progress curve of the reaction with Eco PI restriction enzyme exhibits a lag which is dependent on the enzyme concentration. Kinetic analysis of the progress curves of the reaction suggest slow transitions that can occur during the reaction, characteristic of hysteretic enzymes. The role of ATP in the cleavage mechanism of type III restriction enzymes is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-Hydroxyphenylacetate-3-hydroxylase, an inducible enzyme isolated from the soil bacterium Pseudomonas putida, catalyzes the conversion of p-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. The enzyme requires two protein components: a flavoprotein and a colorless protein referred to as the coupling protein. The flavoprotein alone in the presence of p-hydroxyphenylacetate and substrate analogs catalyzes the wasteful oxidation of NADH with the stoichiometric generation of H2O2. A 1:1 complex of the flavoprotein and coupling protein is required for stoichiometric product formation. Such complex formation also eliminates the nonproductive NADH oxidase activity of the flavoprotein. A new assay measuring the product formation activity of the enzyme was developed using homoprotocatechuate-2,3-dioxygenase, as monitoring the oxidation of NADH was not sufficient to demonstrate enzyme activity. The coupling protein does not seem to have any redox center in it. Thus, this 2-component flavin hydroxylase resembles the other aromatic hydroxylases in that the only redox chromophore present is FAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Res subunits of the type III restriction-modification enzymes share a statistically significant amino acid sequence similarity with several RNA and DNA helicases of the so-called DEAD family. It was postulated that in type III restriction enzymes a DNA helicase activity may be required for local unwinding at the cleavage site. The members of this family share seven conserved motifs, all of which are found in the Res subunit of the type III restriction enzymes. To determine the contribution, if any, of these motifs in DNA cleavage by EcoPI, a type III restriction enzyme, we have made changes in motifs I and II. While mutations in motif I (GTGKT) clearly affected ATP hydrolysis and resulted in loss of DNA cleavage activity, mutation in motif II (DEPH) significantly decreased ATP hydrolysis but had no effect on DNA cleavage. The double mutant R.EcoPIK90R-H229K showed no significant ATPase or DNA restriction activity though ATP binding was not affected. These results imply that there are at least two ATPase reaction centres in EcoPI restriction enzyme. Motif I appears to be involved in coupling DNA restriction to ATP hydrolysis. Our results indicate that EcoPI restriction enzyme does not have a strand separation activity. We suggest that these motifs play a role in the ATP-dependent translocation that has been proposed to occur in the type III restriction enzymes. (C) 1997 Academic Press Limited.