947 resultados para Antartic Polar Front(APF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early/mid Pleistocene. The mid-Pleistocene transition marks a stepwise minimum 7° northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a "900 ka event" that saw major cooling of the oceans and a d13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the sub-tropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the mid-Pleistocene transition. The cooling that initiated the "900 ka event" may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the mid-Pleistocene transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminated diatom ooze samples collected during ODP Leg 177 were analysed using scanning electron microscope (SEM) and optical microscopy to test their potential as high-resolution records of Polar Front hydrography, surface production, and export. SEM analysis from two intervals, marine isotope stage (MIS) 29 and 12/11, respectively, recovered from 50°S in the Atlantic Ocean (ODP Site 1093, Hole A, sections 13H-4 0-18 cm and 23H-4 0-22 cm), show abundant and well-preserved Thalassiothrix antarctica mats, thought to be indicative of rapid export from the surface and deposition in the sediment. A preliminary analysis of laminae succession points to a possible annual couplet/triplet succession of laminae, and suggests exceptionally high local sedimentation rates of 57 and 80 cm/kyr for MIS 12/11 and 29, respectively. Such high accumulation rates imply that local export from the surface layer and sequestration of biogenic silica and organic matter to the sediments may have been much higher than previously suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scavenging of 231Pa and 230Th was investigated in the Atlantic Sector of the Southern Ocean by combining results from sediment trap and in situ filtration studies. We present the first high-resolution profile of dissolved 230Th and 231Pa in surface waters across the ACC, showing a dramatic southward increase of both radionuclides around the southern ACC Front at 533S. High dissolved 231Pa/230Th ratios combined with low 230Th/231Pa fractionation factors (F) in these surface waters result in extremely high 231Pa94/230Th94 ratios of material collected in the shallow traps. Particulate 231Pa94/230Th94 ratios in a shallow trap near Bouvet Island increase continuously during the productive period in austral summer, and drop back in the low flux period. This behavior, following the Rayleigh fractionation principle, is interpreted to be due to an increase in the dissolved 231Pa/230Th ratio in the euphotic zone resulting from preferential scavenging of 230Th relative to 231Pa, even in opal-dominated regions. In the post-bloom stage, the depleted radionuclide concentrations are replenished by upwelling of Circumpolar Deep Water. The high particulate 231Pa94/230Th94 signal is weakened during downward transport of the bloom particles in the water column by incorporation of deep suspended particles, which have a lower 231Pa94/230Th94 ratio. It is shown that under the special hydrographic conditions in the Southern Ocean scavenging from the upper water column significantly influences the budgets of 230Th and 231Pa in the sediment. Nevertheless, the budgets are still made up primarily by scavenging from the large standing stock of deep suspended particles.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations of dissolved organic carbon (DOC) and nitrogen (DON) were measured during early austral Spring 1992 at a number of stations along the 6°W meridian between 47° and 60°S. This included the Polar Front in the north, the zone of melting sea-ice in the south, and waters of the Antarctic Circumpolar Current in between. Concentrations of DOC were low in deep water (34-38 ?M) with generally similar or slightly higher values in the surface mixed layer (38-55 ?M). DOC:DON ratios are wider in surface water than in deep water, i.e. surface accumulations contain relatively C-rich dissolved organic matter. The highly variable distribution of the surface DOC was not related to hydrographic or biotic features (fronts, plankton development) indicating the lability and transient occurrence of this material. Growth rates of bacteria were determined in subsamples from 51 0.8-?m-filtered batches of seawater incubated in the dark at in-situ temperature. Thymidine and leucine uptake and bacterial biomass change as well as changes in dissolved organic carbon in the batches, and oxygen consumption in parallel incubations correlated linearly over 2 weeks of incubation which allowed extrapolation to in-situ conditions. Bacterial growth in these experiments depended strongly on the amount of initial DOC. Growth in water from greater depth (1000 m) containing 38 ?M DOC was minimal, as were DOC-decrease and oxygen consumption. Higher rates were observed in surface water slightly enriched with DOC, and highest rates in surface water amended with DOC-rich melted sea ice. Bacterial growth efficiencies (biomass C-increase vs DOC consumed) were about 30%. The experiments showed that at least 40-60% of the DOC in excess of deep water concentrations was available to bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Neogene and Quaternary sedimentary record of Leg 71 and previously drilled sequences from the Southern Ocean reveal evidence of a major late Miocene change of oceanic and glacial conditions in the southern high latitudes during paleomagnetic Chron 9. The characteristics of late Miocene sedimentation and in particular the study of erosional patterns and ice-rafted debris suggest the following conclusions. 1) In the late Miocene, the Polar Front first migrated to the northern latitudes of the Southern Ocean and surface water temperatures became similar to those of today. 2) Extensive ice shelves or ice tongues were not present along the Antarctic margin until late Chron 9 (about 9.0 Ma). 3) Before Chron 9, West Antarctica was occupied by an archipelago and the West Antarctic Sea. 4) Extensive ice shelves formed in the West Antarctic region, eventually coalescing and thickening to form the grounded West Antarctic ice sheet by Chron 9. 5) The newly formed West Antarctic ice sheet was probably unstable and frequently became an ungrounded ice shelf, thus accounting for the scarcity of late Miocene ice-rafted debris. 6) Extensive erosion or nondeposition of sediment was probably the result of increased Antarctic Bottom Water (AABW) formation in the West Antarctic region during the initial formation of extensive West Antarctic ice shelves and during periods when the West Antarctic ice sheet was ungrounded. 7) In the Southwest Atlantic, AABW velocity waned during the latest Miocene. During the late Gilbert Chron a major and permanent change occurred in the pattern of ice-rafting to the South Atlantic, and after 4.35 Ma the increased IRD accumulation rate and frequency of major episodes of IRD accumulation suggest increased stability of the West Antarctic ice sheet. In addition, radiolarian faunas of Hole 514 record at least eight migrations of the Polar Front to the north of the site during the past 4.07 m.y. An apparent increase in the frequency of Polar Front migrations occurred about 2.7-2.6 Ma, possibly in response to oceanic change induced by fluctuations in glacial conditions of the Northern Hemisphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the 'snow-sea ice-seawater' continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (Hg(T)) concentrations varied from 0.63 to 2.76 pmol/L with 'transient-type' vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean Hg(T) concentrations (1.35 ± 0.39 pmol/L) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol/L). Labile Hg (Hg(R)) concentrations varied from 0.01 to 2.28 pmol/L, with a distribution showing that the Hg(T) enrichment south of the SPF consisted mainly of Hg(R) (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHg(T)) concentrations ranged from 0.02 to 0.86 pmol/L. All vertical MeHg(T) profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for Hg(T), low mean MeHg(T) concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHg(T) concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHg(T) vs Apparent Oxygen Utilization (AOU) relationship (p <0.001). The proportion of Hg(T) as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station Hg(T) and Hg(R) concentrations found in the 'snow-sea ice-seawater' continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of Hg(T) there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHg(T) concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol/L. The MeHg(T) vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas Hg(T) concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010; doi:10.1021/es903839n), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 µM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 µM and occasionally <1.0 µM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si/m**2 (range 162-793 mmol Si/m**2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si/m**2/d, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16-21 mmol Si/m**2/d, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100-150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system. Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of <=4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic of early spring nanoprotozoa was investigated in three characteristic water masses of the Southern Ocean: the Marginal Ice Zone, the intermediate waters of the Antarctic Circumpolar Current and the Polar Frontal Zone. Biomass and feeding activities of nanoprotozoa were measured, as well as the biomass of their potential prey-bacteria and phototrophic flagellates-on the 6°W meridian in the Southern Ocean along three repetitive transects between 47 and 60° South from October to November 1992. On average, nanoprotozooplankton biomass accounted for 77% of the combined biomass of bacteria and phototrophic flagellates, and was dominated by dinoflagellates and flagellates smaller than 5 µm. As a general trend, low protozoan biomass of 2 mg C/m**3 was typical of the ice covered area, while significantly higher biomasses culminating at 15 mg C/m**3 were recorded at the Polar Front. Biomasses of bacteria and total phytoplankton were distributed accordingly, with larger values at the Polar Front. Phototrophic flagellates did not show any geographical trend. No seasonal trend could be identified in the Marginal Ice Zone and in the intermediate waters of the Antarctic Circumpolar Current. On the other hand, at the Polar Front region a three-fold increase was observed within a 2-month period for nanoprotozooplankton biomass. Such a biomass increase was also detected for bacterioplankton and total phytoplankton biomass. Half-saturation constants and maximum specific ingestion of nanoprotozoan taxons feeding on bacteria and phototrophic flagellates were determined using the technique of fluorescent labelled bacteria (FLB) and algae (FLA) over a large range of prey concentrations. Maximum ingestion rates ranged between 0.002 and 0.015/h for bactivorous nanoprotozoa and heterotrophic flagellates larger than 5 µm feeding on phototrophic flagellates. The markedly high maximum ingestion rates of 0.4/h characterising nanophytoplankton ingestion by dinoflagellates evidenced the strong ability of dinoflagellates for feeding on nanophytoplankton. Daily ingestion rates were calculated from nanoprotozoan grazing parameters and carbon biomass of prey and predators. This indicated that nanoprotozoa ingestion of daily bacterioplankton and phytoplankton production in early spring ranged from 32 to 40%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All holes drilled during Leg 114 contained ice-rafted debris. Analysis of samples from Hole 699A, Site 701, and Hole 704A yielded a nearly complete history of ice-rafting episodes. The first influx of ice-rafted debris at Site 699, on the northeastern slope of the Northeast Georgia Rise, occurred at a depth of 69.94 m below seafloor (mbsf) in sediments of early Miocene age (23.54 Ma). This material is of the same type as later ice-rafted debris, but represents only a small percentage of the coarse fraction. Significant ice-rafting episodes occurred during Chron 5. Minor amounts of ice-rafted debris first reached Site 701, on the western flank of the Mid-Atlantic Ridge (8.78 Ma at 200.92 mbsf), and more arrived in the late Miocene (5.88 Ma). The first significant quantity of sand and gravel appeared at a depth of 107.76 mbsf (4.42 Ma). Site 704, on the southern part of the Meteor Rise, received very little or no ice-rafted debris prior to 2.46 Ma. At this time, however, the greatest influx of ice-rafted debris occurred at this site. This time of maximum ice rafting correlates reasonably well with influxes of ice-rafted debris at Sites 701 (2.24 Ma) and 699 (2.38 Ma), in consideration of sample spacing at these two sites. These peaks of ice rafting may be Sirius till equivalents, if the proposed Pliocene age of Sirius tills can be confirmed. After about 1.67 Ma, the apparent mass-accumulation rate of the sediments at Site 704 declined, but with major fluctuations. This decline may be the result of a decrease in the rate of delivery of detritus from Antarctica due to reduced erosive power of the glaciers or a northward shift in the Polar Front Zone, a change in the path taken by the icebergs, or any combination of these factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The practically continuous, paleomagnetically dated late Gauss-Brunhes sediment profiles of ODP Sites 699 and 701, south of the present Polar Front Zone (PFZ), and Site 704, north of the present PFZ, are used for a high-resolution study of abundance fluctuations of eight stratigraphic marker species in space and time. Ecological restrictions and preferences of the diatom species Hemidiscus karstenii, Actinocyclus ingens f. planus, Thalassiosira elliptipora, Thalassiosira kolbei, Thalassiosira vulnifica, Simonseniella barboi, Cosmiodiscus insignis, and Nitzschia weaveri are deduced. The ages of their first abundant appearance datums (FAAD), last-appearance datums (LAD), and last abundant appearance datums (LAAD) at the three sites are determined. The interpolated datum ages agree relatively well with those determined by other authors, if one interprets most of their LADs as LAADs. FAADs and LAADs produce more accurate datums than LADs. For the late Matuyama (younger than approximately 2.0 Ma), when PFZ fluctuations effected all three site sites, the datum ages determined agree within the methodically caused limits of accuracy for each datum. For the early Matuyama (older than approximately 2.0 Ma) the results can be interpreted as either that the ages of the FAAD of T. kolbei and LAAD of T. vulnifica datums determined at Sites 699 and 701 are more reliable or that these datums are diachronous between these two sites and Site 704. Such a diachroneity could be caused by different paleoceanographic conditions (stable subantarctic conditions over Site 704 and stable antarctic conditions over Sites 699 and 701). A few taxonomic changes were necessary. One new genus is defined (Simonseniella gen. nov.) and five new combinations are proposed: Simonseniella barboi (Brun) comb, nov., Simonseniella praebarboi (Schrader) comb, nov., Simonseniella curvirostris (Jousé) comb, nov., Thalassiosira elliptipora (Donahue) comb, nov., and Thalassiosira vulnifica (Gombos) comb. nov.