914 resultados para Angle of rotation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the changes in axial length with the combined effect of accommodation and angle of gaze (convergence and downward gaze) over 5 minutes in groups of myopes and emmetropes. Methods: A total of 31 subjects (nine emmetropes, 10 low myopes, and 12 moderate to high myopes) aged from 18 to 31 years were recruited. To measure ocular biometrics in inferonasal gaze with accommodation, an optical biometer (Lenstar LS900) was inclined on a tilt and height adjustable stage, with the subject’s chinrest mounted on a rotary stage to induce various levels of convergence by rotation of the subject’s head in primary or downward gaze. Initially, the subjects performed a distance viewing task in primary gaze for 10 minutes to provide a ‘wash-out’ period for prior visual tasks, and then the subject’s axial length and ocular biometrics were measured in nine different combinations of gaze/accommodation over 5 minutes. These nine sessions for all gaze measurements (i.e. three levels of accommodation 9 three levels of convergence) were completed across 3 days of testing (one accommodation condition on each day).The nine combinations of gaze/accommodation were based on those required to view the centre, right and left edges of a distant TV at 6 m in primary gaze, an intermediate task (i.e. computer at 50 cm in 10° downward gaze) and a near task (i.e. reading A4 page at 20 cm in 20° downward gaze). Subjects were wearing a custom built three-axes head tracker throughout the experiment that monitored subjects’ relative head movements (roll, pitch and yaw) during measurements. Results: A significant increase in axial length occurred with the combined effect of accommodation, convergence and downward gaze (repeated measures ANOVA, p < 0.001), with the greatest axial elongation during the near task in downward gaze with convergence (i.e. downward 20°/inward 33°, with 5 D accommodation) (mean change 33 ± 13 lm, after 5 minutes task) followed by the intermediate task (i.e. downward 10°/inward 25°, with 2 D accommodation) (mean change 14 ± 11 lm, after 5 minutes task).Changes in axial length for the distance task (i.e. primary gaze/9° convergence, with 0.16 D accommodation) were not statistically significant (mean change 4 ± 8 lm, after 5 minutes task, p > 0.05). Moderate to high myopes had a greater change in the axial length (mean change 40 ± 11 lm after 5 minutes of near task) than that of emmetropes (mean change 29 ± 15 lm after 5 minutes of near task) and low myopes (mean change 29 ± 16 lm after 5 minutes of near task) associated with time (p = 0.02) and accommodation by time (p = 0.03). Conclusions: The combination of accommodation, convergence and downward angle has a significant short term effect on axial length over time. The near task in downward gaze with convergence caused a greater change in axial length than the intermediate and distant visual tasks. The greater axial elongation measured in the infero-nasal direction with accommodation is most likely associated with a combination of biomechanical factors such as, extraocular muscle forces and ciliary muscle contraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Markerless motion capture systems are relatively new devices that can significantly speed up capturing full body motion. A precision of the assessment of the finger’s position with this type of equipment was evaluated at 17.30 ± 9.56 mm when compare to an active marker system [1]. The Microsoft Kinect was proposed to standardized and enhanced clinical evaluation of patients with hemiplegic cerebral palsy [2]. Markerless motion capture systems have the potential to be used in a clinical setting for movement analysis, as well as for large cohort research. However, the precision of such system needs to be characterized. Global objectives • To assess the precision within the recording field of the markerless motion capture system Openstage 2 (Organic Motion, NY). • To compare the markerless motion capture system with an optoelectric motion capture system with active markers. Specific objectives • To assess the noise of a static body at 13 different location within the recording field of the markerless motion capture system. • To assess the smallest oscillation detected by the markerless motion capture system. • To assess the difference between both systems regarding the body joint angle measurement. Methods Equipment • OpenStage® 2 (Organic Motion, NY) o Markerless motion capture system o 16 video cameras (acquisition rate : 60Hz) o Recording zone : 4m * 5m * 2.4m (depth * width * height) o Provide position and angle of 23 different body segments • VisualeyezTM VZ4000 (PhoeniX Technologies Incorporated, BC) o Optoelectric motion capture system with active markers o 4 trackers system (total of 12 cameras) o Accuracy : 0.5~0.7mm Protocol & Analysis • Static noise: o Motion recording of an humanoid mannequin was done in 13 different locations o RMSE was calculated for each segment in each location • Smallest oscillation detected: o Small oscillations were induced to the humanoid mannequin and motion was recorded until it stopped. o Correlation between the displacement of the head recorded by both systems was measured. A corresponding magnitude was also measured. • Body joints angle: o Body motion was recorded simultaneously with both systems (left side only). o 6 participants (3 females; 32.7 ± 9.4 years old) • Tasks: Walk, Squat, Shoulder flexion & abduction, Elbow flexion, Wrist extension, Pronation / supination (not in results), Head flexion & rotation (not in results), Leg rotation (not in results), Trunk rotation (not in results) o Several body joint angles were measured with both systems. o RMSE was calculated between signals of both systems. Results Conclusion Results show that the Organic Motion markerless system has the potential to be used for assessment of clinical motor symptoms or motor performances However, the following points should be considered: • Precision of the Openstage system varied within the recording field. • Precision is not constant between limb segments. • The error seems to be higher close to the range of motion extremities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flapping equation for a rotating rigid helicopter blade is typically derived by considering (1)small flap angle, (2) small induced angle of attack and (3) linear aerodynamics. However, the use of nonlinear aerodynamics such as dynamic stall can make the assumptions of small angles suspect as shown in this paper. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived. A semi-empirical dynamic stall aerodynamics model (ONERA model) is used. Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are examined. It is shown that the small flapping assumption, and to a lesser extent, the small induced angle ofattack assumption, can lead to inaccurate predictions of the blade flap response in certain flight conditions for some rotors when nonlinear aerodynamics is considered. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple technique involving the use of a rotating and a stationary diffuser has been developed to vary the spatial coherence of light from a He-Ne laser. Using this technique an experimental investigation of the dependence of rotation sensitivity of Lau fringes on the spatial coherence of the illuminating wavefield has been carried out. It is observed that (i) the rotation sensitivity of Lau fringes varies in a well-defined manner as a function of the spatial coherence of the light used; (ii) the extremely good rotation sensitivity of Lau fringes can be used to great advantage (compared to the conventional double slit method) in the measurement of the spatial coherence of a wavefield; (iii) Lau fringes are formed at various levels of spatial coherence and as such it appears that the Lau effect need not be associated with an incoherent optical field

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model for coalescence efficiency of two drops embedded in an eddy has been developed. Unlike the other models which consider only head-on collisions, the model considers the droplets to approach at an arbitrary angle. The drop pair is permitted to undergo rotation while they approach each other. For coalescence to occur, the drops are assumed to approach each other under a squeezing force acting over the life time of eddy but which can vary with time depending upon the angle of approach. The model accounts for the deformation of tip regions of the approaching drops and, describes the rupture of the intervening film, based on stability considerations while film drainage is continuing under the combined influence of the hydrodynamic and van der Waals forces. The coalescence efficiency is defined as the ratio of the range of angles resulting in coalescence to the total range of all possible approach angles. The model not only reconciles the contradictory predictions made by the earlier models based on similar framework but also brings out the important role of dispersed-phase viscosity. It further predicts that the dispersions involving pure phases can be stabilized at high rps values. Apart from explaining the hitherto unexplained experimental data of Konno et al. qualitatively, the model also offers an alternate explanation for the interesting observations of Shinnar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation, unidirectional grinding marks were created on a set of steel plates. Sliding experiments were then conducted with the prepared steel plates using Al-Mg alloy pins and an inclined pin-on-plate sliding tester. The goals of the experiments were to ascertain the influence of inclination angle and grinding mark direction on friction and transfer layer formation during sliding contact. The inclination angle of the plate was held at 0.2 deg, 0.6 deg, 1 deg, 1.4 deg, 1.8 deg, 2.2 deg, and 2.6 deg in the tests. The pins were slid both perpendicular and parallel to the grinding marks direction. The experiments were conducted under both dry and lubricated conditions on each plate in an ambient environment. Results showed that the coefficient of friction and the formation of transfer layer depend on the grinding marks direction and inclination angle of the hard surfaces. For a given inclination angle, under both dry and lubricated conditions, the coefficient of friction and transfer layer formation were found to be greater when the pins slid perpendicular to the unidirectional grinding marks than when the pins slid parallel to the grinding marks. In addition, a stick-slip phenomenon was observed under lubricated conditions at the highest inclination angle for sliding perpendicular to the grinding marks direction. This phenomenon could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. DOI: 10.1115/1.4002604]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimates of interfacial friction angle (delta) are necessary for the design of retaining structures and deep foundations, Recommendations in the literature regarding delta values are often contradictory and are therefore not easy to apply in geotechnical design, A critical examination of past studies in terms of data generation techniques used and conclusions drawn indicates that two distinctly different test procedures/techniques have been evolved. The interfacial situation in practice can also be categorized into two broad types, These two types of interface problems in geotechnical engineering are (a) the structure is placed on the free surface of prepared fill (type A situation) and (b) the fill is placed against the material surface which functions as a confined boundary (type B situation), The friction angle delta depends on the surface roughness of the construction material, But in the type A situation, it is independent of density and its limiting maximum value (delta(lim)) is the critical state friction angle phi(cv). In the type B situation, it is dependent on density of the fill and its limiting maximum value is the peak angle of internal friction phi(p) of the fill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A symmetric cascade of selective pulses applied on connected transitions leads to the excitation of a selected multiple-quantum coherence by a well-defined angle. This cascade selectively operates on the subspace of the multiple-quantum coherence and acts as a generator of rotation selectively on the multiple-quantum subspace. Single-transition operator algebra has been used to explain these experiments. Experiments have been performed on two- and three-spin systems. It is shown that such experiments can be utilized to measure the relaxation times of selected multiple-quantum coherences or of a specifically prepared initial longitudinal state of the spin system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMR spectra of liquid crystalline phases and the molecules dissolved therein, spinning at and near the magic angle provide information on the director dynamics and the order parameter. The studies on the dynamics of the liquid crystal director for sample spinning near magic angle in mesophases with positive and negative diamagnetic susceptibility anisotropies (Delta chi) and their mixtures with near-zero macroscopic diamagnetic susceptibility anisotropies have been reported. In systems with weakly positive Delta chi, the director has been observed to switch from an orientation parallel to the spinning axis at low rotational speeds to one perpendicular to the spinning axis at high rotational speeds, when the angle theta, the axis of rotation makes with the magnetic field is smaller than the magic angle theta(m). For systems with a small negative Delta chi, similar director behaviour has been observed for theta greater than theta(m). At magic angle, the spectra under slow spinning speeds exhibit a centre band and side bands at integral values of the spinning speeds. The intensities of the spinning side bands have been shown to contain information on the sign and the magnitude of the order parameter(s). The results are discussed with illustrative examples. Results on the orientation of the chemical shielding tensor obtained from a combination of the NMR studies in the solid and the liquid crystalline states, have been described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of the evolution of the microstructure and crystallographic texture during free end torsion of a single phase magnesium alloy Mg-3Al-0.3Mn (AM30) was carried out. The torsion tests were done at a temperature of 250 degrees C to different strain levels in order to examine the progressive evolution of the microstructure and texture. A detailed microstructural analysis was performed using the electron back-scattered diffraction technique. The observed microstructural features indicated the occurrence of continuous dynamic recovery and recrystallization, starting with the formation of subgrains and ending with recrystallized grains with high angle boundaries. Texture and microstructure evolution were analysed by decoupling the effects of imposed shear and of dynamic recrystallization. Microstructure was partitioned to separate the deformed grains from the recovered/recrystallized grains. The texture of the deformed part could be reproduced by viscoplastic self-consistent polycrystal simulations. Recovered/recrystallized grains were formed as a result of rotation of these grains so as to reach a low plastic energy state. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat and mass transfer studies in a calandria based reactor is quite complex both due to geometry and due to the complex mixing flow. It is challenging to devise optimum operating conditions with efficient but safe working range for such a complex configuration. Numerical study known to be very effective is taken up for investigation. In the present study a 3D RANS code with turbulence model has been used to compute the flow fields and to get the heat transfer characteristics to understand certain design parameters of engineering importance. The angle of injection and of the coolant liquid has a large effect on the heat transfer within the reactor.