856 resultados para Amplifiers, Radio frequency
Resumo:
The manufacture of a radio frequency filter box using high pressure die casting (HPDC) is compared to the traditional high speed machining route. This paper describes an industrial exercise that concluded HPDC to be an economical and appropriate method to produce larger volumes of thin-walled telecommunications components. Modifications to the component design were made to make the component suitable for the HPDC process. Development of the die design through simulation modelling is described. The wrought alloy was replaced by near-eutectic Al-Si die casting alloy that was found to give better temperature stability performance. Apart from the economic benefits, HPDC was found to give lower filter efficiency losses through better surface finish. The effects of HPDC process variables, such as intensification pressure and injection piston velocity, on component quality, particularly porosity levels, were investigated. The pressure was analysed in terms of HPDC machine set pressure and the pressure measured in the die cavity by pressure sensors. Porosity was found to decrease with increased pressure and slightly increase with higher casting velocities.
Resumo:
The following thesis describes the computer modelling of radio frequency capacitively coupled methane/hydrogen plasmas and the consequences for the reactive ion etching of (100) GaAs surfaces. In addition a range of etching experiments was undertaken over a matrix of pressure, power and methane concentration. The resulting surfaces were investigated using X-ray photoelectron spectroscopy and the results were discussed in terms of physical and chemical models of particle/surface interactions in addition to the predictions for energies, angles and relative fluxes to the substrate of the various plasma species. The model consisted of a Monte Carlo code which followed electrons and ions through the plasma and sheath potentials whilst taking account of collisions with background neutral gas molecules. The ionisation profile output from the electron module was used as input for the ionic module. Momentum scattering interactions of ions with gas molecules were investigated via different models and compared against results given by quantum mechanical code. The interactions were treated as central potential scattering events and the resulting neutral cascades were followed. The resulting predictions for ion energies at the cathode compared well to experimental ion energy distributions and this verified the particular form of the electrical potentials used and their applicability in the particular geometry plasma cell used in the etching experiments. The final code was used to investigate the effect of external plasma parameters on the mass distribution, energy and angles of all species impingent on the electrodes. Comparisons of electron energies in the plasma also agreed favourably with measurements made using a Langmuir electric probe. The surface analysis showed the surfaces all to be depleted in arsenic due to its preferential removal and the resultant Ga:As ratio in the surface was found to be directly linked to the etch rate. The etch rate was determined by the methane flux which was predicted by the code.
Resumo:
Warehouse is an essential component in the supply chain, linking the chain partners and providing them with functions of product storage, inbound and outbound operations along with value-added processes. Allocation of warehouse resources should be efficient and effective to achieve optimum productivity and reduce operational costs. Radio frequency identification (RFID) is a technology capable of providing real-time information about supply chain operations. It has been used by warehousing and logistic enterprises to achieve reduced shrinkage, improved material handling and tracking as well as increased accuracy of data collection. However, both academics and practitioners express concerns about challenges to RFID adoption in the supply chain. This paper provides a comprehensive analysis of the problems encountered in RFID implementation at warehouses, discussing the theoretical and practical adoption barriers and causes of not achieving full potential of the technology. Lack of foreseeable return on investment (ROI) and high costs are the most commonly reported obstacles. Variety of standards and radio wave frequencies are identified as source of concern for decision makers. Inaccurate performance of the RFID within the warehouse environment is examined. Description of integration challenges between warehouse management system and RFID technology is given. The paper discusses the existing solutions to technological, investment and performance RFID adoption barriers. Factors to consider when implementing the RFID technology are given to help alleviate implementation problems. By illustrating the challenges of RFID in the warehouse environment and discussing possible solutions the paper aims to help both academics and practitioners to focus on key areas constituting an obstacle to the technology growth. As more studies will address these challenges, the realisation of RFID benefits for warehouses and supply chain will become a reality.
An agent approach to improving radio frequency identification enabled Returnable Transport Equipment
Resumo:
Returnable transport equipment (RTE) such as pallets form an integral part of the supply chain and poor management leads to costly losses. Companies often address this matter by outsourcing the management of RTE to logistics service providers (LSPs). LSPs are faced with the task to provide logistical expertise to reduce RTE related waste, whilst differentiating their own services to remain competitive. In the current challenging economic climate, the role of the LSP to deliver innovative ways to achieve competitive advantage has never been so important. It is reported that radio frequency identification (RFID) application to RTE enables LSPs such as DHL to gain competitive advantage and offer clients improvements such as loss reduction, process efficiency improvement and effective security. However, the increased visibility and functionality of RFID enabled RTE requires further investigation in regards to decision‐making. The distributed nature of the RTE network favours a decentralised decision‐making format. Agents are an effective way to represent objects from the bottom‐up, capturing the behaviour and enabling localised decision‐making. Therefore, an agent based system is proposed to represent the RTE network and utilise the visibility and data gathered from RFID tags. Two types of agents are developed in order to represent the trucks and RTE, which have bespoke rules and algorithms in order to facilitate negotiations. The aim is to create schedules, which integrate RTE pick‐ups as the trucks go back to the depot. The findings assert that: - agent based modelling provides an autonomous tool, which is effective in modelling RFID enabled RTE in a decentralised utilising the real‐time data facility. ‐ the RFID enabled RTE model developed enables autonomous agent interaction, which leads to a feasible schedule integrating both forward and reverse flows for each RTE batch. ‐ the RTE agent scheduling algorithm developed promotes the utilisation of RTE by including an automatic return flow for each batch of RTE, whilst considering the fleet costs andutilisation rates. ‐ the research conducted contributes an agent based platform, which LSPs can use in order to assess the most appropriate strategies to implement for RTE network improvement for each of their clients.
Resumo:
Fierce competition within the third party logistics (3PL) market has developed as providers compete to win customers and enhance their competitive advantage through cost reduction plans and creating service differentiation. 3PL providers are expected to develop advanced technological and logistical service applications that can support cost reduction while increasing service innovation. To enhance competitiveness, this paper proposes the implementation of radio-frequency identification (RFID) enabled returnable transport equipment (RTE) in combination with the consolidation of network assets and cross-docking. RFID enabled RTE can significantly improve network visibility of all assets with continuous real-time data updates. A four-level cyclic model aiding 3PL providers to achieve competitive advantage has been developed. The focus is to reduce assets, increase asset utilisation, reduce RTE cycle time and introduce real-time data in the 3PL network. Furthermore, this paper highlights the need for further research from the 3PL perspective. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
We propose a new approach to the generation of an alphabet for secret key exchange relying on small variations in the cavity length of an ultra-long fiber laser. This new concept is supported by experimental results showing how the radio-frequency spectrum of the laser can be exploited as a carrier to exchange information. The test bench for our proof of principle is a 50 km-long fiber laser linking two users, Alice and Bob, where each user can randomly add an extra 1 km-long segment of fiber. The choice of laser length is driven by two independent random binary values, which makes such length become itself a random variable. The security of key exchange is ensured whenever the two independent random choices lead to the same laser length and, hence, to the same free spectral range.
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
We propose a new approach for secret key exchange involving the variation of the cavity length of an ultra-long fibre laser. The scheme is based on the realisation that the free spectral range of the laser cavity can be used as an information carrier. We present a proof-of-principle demonstration of this new concept using a 50-km-long fibre laser to link two users, both of whom can randomly add an extra 1-km-long fibre segment.
Resumo:
Radio frequency identification (RFID) technology has gained increasing popularity in businesses to improve operational efficiency and maximise costs saving. However, there is a gap in the literature exploring the enhanced use of RFID to substantially add values to the supply chain operations, especially beyond what the RFID vendors could offer. This paper presents a multi-agent system, incorporating RFID technology, aimed at fulfilling the gap. The system is developed to model supply chain activities (in particular, logistics operations) and is comprised of autonomous and intelligent agents representing the key entities in the supply chain. With the advanced characteristics of RFID incorporated, the agent system examines ways logistics operations (i.e. distribution network) particular) can be efficiently reconfigured and optimised in response to dynamic changes in the market, production and at any stage in the supply chain. © 2012 IEEE.
Resumo:
This chapter presents Radio Frequency Identification (RFID), which is one of the Automatic Identification and Data Capture (AIDC) technologies (Wamba and Boeck, 2008) and discusses the application of RFID in E-Commerce. Firstly RFID is defined and the tag and reader components of the RFID system are explained. Then historical context of RFID is briefly discussed. Next, RFID is contrasted with other AIDC technologies, especially the use of barcodes which are commonly applied in E-Commerce. Lastly, RFID applications in E-Commerce are discussed with the focus on achievable benefits and obstacles to successful applications of RFID in E-Commerce, and ways to alleviate them.
Resumo:
Radio Frequency Identification Technology (RFID) adoption in healthcare settings has the potential to reduce errors, improve patient safety, streamline operational processes and enable the sharing of information throughout supply chains. RFID adoption in the English NHS is limited to isolated pilot studies. Firstly, this study investigates the drivers and inhibitors to RFID adoption in the English NHS from the perspective of the GS1 Healthcare User Group (HUG) tasked with coordinating adoption across private and public sectors. Secondly a conceptual model has been developed and deployed, combining two of foresight’s most popular methods; scenario planning and technology roadmapping. The model addresses the weaknesses of each foresight technique as well as capitalizing on their individual, inherent strengths. Semi structured interviews, scenario planning workshops and a technology roadmapping exercise were conducted with the members of the HUG over an 18-month period. An action research mode of enquiry was utilized with a thematic analysis approach for the identification and discussion of the drivers and inhibitors of RFID adoption. The results of the conceptual model are analysed in comparison to other similar models. There are implications for managers responsible for RFID adoption in both the NHS and its commercial partners, and for foresight practitioners. Managers can leverage the insights gained from identifying the drivers and inhibitors to RFID adoption by making efforts to influence the removal of inhibitors and supporting the continuation of the drivers. The academic contribution of this aspect of the thesis is in the field of RFID adoption in healthcare settings. Drivers and inhibitors to RFID adoption in the English NHS are compared to those found in other settings. The implication for technology foresight practitioners is a proof of concept of a model combining scenario planning and technology roadmapping using a novel process. The academic contribution to the field of technology foresight is the conceptual development of foresight model that combines two popular techniques and then a deployment of the conceptual foresight model in a healthcare setting exploring the future of RFID technology.
Resumo:
The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2 Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature. ^
Resumo:
Over the last 10 years, the development and the understanding of the mechanical properties of thin film material have been essential for improving the reliability and lifetime in operation of microelectromechanical systems (MEMS). Although the properties of a bulk material might be well characterized, thin-film properties are considerably different from those of the bulk and it cannot be assumed that mechanical properties measured using bulk specimens will apply to the same materials when used as a thin film in MEMS. For many microelectronic thin films, the material properties depend strongly on the details of the deposition process and the growth conditions on its substrate. ^ The purpose of this dissertation is to determine the temperature dependence of a gold thin film membrane on the pull down voltage of a MEMS switch as the temperature is varied from room temperature (300 K) to cryogenic temperature (10 K). For this purpose, an RF MEMS shunt switch was designed and fabricated. The switch is composed of a gold coplanar waveguide structure with a gold bridge membrane suspended above an area of the center conductor which is covered by a dielectric (BaTiO3). The gold membrane is actuated by an electrostatic force acting between the transmission line and the membrane when voltage is applied. ^ Material characterization of the gold evaporated thin film membrane was obtained via AFM, SEM, TEM and X-ray diffraction analyses. A mathematical relation was used to estimate the pull down voltage of the switch at cryogenic temperature and results showed that the mathematical theory match the experimental values of the tested MEMS switches. ^
Resumo:
The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature.