953 resultados para Ambient temperature


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A procedure for measuring the overheating temperature (ΔT ) of a p-n junction area in the structure of photovoltaic (PV) cells converting laser or solar radiations relative to the ambient temperature has been proposed for the conditions of connecting to an electric load. The basis of the procedure is the measurement of the open-circuit voltage (VO C ) during the initial time period after the fast disconnection of the external resistive load. The simultaneous temperature control on an external heated part of a PV module gives the means for determining the value of VO C at ambient temperature. Comparing it with that measured after switching OFF the load makes the calculation of ΔT possible. Calibration data on the VO C = f(T ) dependences for single-junction AlGaAs/GaAs and triple-junction InGaP/GaAs/Ge PV cells are presented. The temperature dynamics in the PV cells has been determined under flash illumination and during fast commutation of the load. Temperature measurements were taken in two cases: converting continuous laser power by single-junction cells and converting solar power by triple-junction cells operating in the concentrator modules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The decomposition of azodicarbonamide, used as foaming agent in PVC—plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min−1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g−1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol−1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Circadian clocks maintain robust and accurate timing over a broad range of physiological temperatures, a characteristic termed temperature compensation. In Arabidopsis thaliana, ambient temperature affects the rhythmic accumulation of transcripts encoding the clock components TIMING OF CAB EXPRESSION1 (TOC1), GIGANTEA (GI), and the partially redundant genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). The amplitude and peak levels increase for TOC1 and GI RNA rhythms as the temperature increases (from 17 to 27 degrees C), whereas they decrease for LHY. However, as temperatures decrease ( from 17 to 12 degrees C), CCA1 and LHY RNA rhythms increase in amplitude and peak expression level. At 27 degrees C, a dynamic balance between GI and LHY allows temperature compensation in wild-type plants, but circadian function is impaired in Ihy and gi mutant plants. However, at 12 degrees C, CCA1 has more effect on the buffering mechanism than LHY, as the cca1 and gi mutations impair circadian rhythms more than Ihy at the lower temperature. At 17 degrees C, GI is apparently dispensable for free-running circadian rhythms, although partial GI function can affect circadian period. Numerical simulations using the interlocking-loop model show that balancing LHY/CCA1 function against GI and other evening-expressed genes can largely account for temperature compensation in wild-type plants and the temperature-specific phenotypes of gi mutants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fast X-ray photoelectron spectroscopy reveals efficient C–Cl activation of 1,1,1-trichloroethane occurs over platinum surfaces at 150 K, and in the presence of hydrogen, sustained ambient temperature dehydrochlorination to HCl and ethane is possible over supported Pt/Al2O3 catalysts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Combined the large evanescent field of microfiber with the high thermal conductivity of graphene, a sensitive all-fiber temperature sensor based on graphene-assisted micro fiber is proposed and experimentally demonstrated. Microfiber can be easily attached with graphene due to the electrostatic 6 force, resulting in an effective interaction between graphene and the evanescent field of microfiber. The change of the ambient temperature has a great influence on the conductivity of graphene, leading to the variation of the effective refractive index of microfiber. Consequently, the optical power transmission will be changed. The temperature sensitivity of 0.1018 dB/°C in the heating process and 0.1052 dB/°C in the cooling process as well as a high resolution of 0.0098 °C is obtained in the experiment. The scheme may have great potential in sensing fields owing to the advantages of high sensitivity, compact size, and low cost.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The work presented in my thesis addresses the two cornerstones of modern astronomy: Observation and Instrumentation. Part I deals with the observation of two nearby active galaxies, the Seyfert 2 galaxy NGC 1433 and the Seyfert 1 galaxy NGC 1566, both at a distance of $\sim10$ Mpc, which are part of the Nuclei of Galaxies (NUGA) sample. It is well established that every galaxy harbors a super massive black hole (SMBH) at its center. Furthermore, there seems to be a fundamental correlation between the stellar bulge and SMBH masses. Simulations show that massive feedback, e.g., powerful outflows, in Quasi Stellar Objects (QSOs) has an impact on the mutual growth of bulge and SMBH. Nearby galaxies follow this relation but accrete mass at much lower rates. This gives rise to the following questions: Which mechanisms allow feeding of nearby Active Galactic Nuclei (AGN)? Is this feeding triggered by events, e.g., star formation, nuclear spirals, outflows, on $\sim500$ pc scales around the AGN? Does feedback on these scales play a role in quenching the feeding process? Does it have an effect on the star formation close to the nucleus? To answer these questions I have carried out observations with the Spectrograph for INtegral Field Observation in the Near Infrared (SINFONI) at the Very Large Telescope (VLT) situated on Cerro Paranal in Chile. I have reduced and analyzed the recorded data, which contain spatial and spectral information in the H-band ($1.45 \mic-1.85 \mic$) and K-band ($1.95 \mic-2.45 \mic$) on the central $10\arcsec\times10\arcsec$ of the observed galaxies. Additionally, Atacama Large Millimeter/Sub-millimeter Array (ALMA) data at $350$ GHz ($\sim0.87$ mm) as well as optical high resolution Hubble Space Telescope (HST) images are used for the analysis. For NGC 1433 I deduce from comparison of the distributions of gas, dust, and intensity of highly ionized emission lines that the galaxy center lies $\sim70$ pc north-northwest of the prior estimate. A velocity gradient is observed at the new center, which I interpret as a bipolar outflow, a circum nuclear disk, or a combination of both. At least one dust and gas arm leads from a $r\sim200$ pc ring towards the nucleus and might feed the SMBH. Two bright warm H$_2$ gas spots are detected that indicate hidden star formation or a spiral arm-arm interaction. From the stellar velocity dispersion (SVD) I estimate a SMBH mass of $\sim1.74\times10^7$ \msol. For NGC 1566 I observe a nuclear gas disk of $\sim150$ pc in radius with a spiral structure. I estimate the total mass of this disk to be $\sim5.4\times10^7$ \msol. What mechanisms excite the gas in the disk is not clear. Neither can the existence of outflows be proven nor is star formation detected over the whole disk. On one side of the spiral structure I detect a star forming region with an estimated star formation rate of $\sim2.6\times10^{-3}$ \msol\ yr$^{-1}$. From broad Br$\gamma$ emission and SVD I estimate a mean SMBH mass of $\sim5.3\times10^6$ \msol\ with an Eddington ratio of $\sim2\times10^{-3}$. Part II deals with the final tests of the Fringe and Flexure Tracker (FFTS) for LBT INterferometric Camera and the NIR/Visible Adaptive iNterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) in Arizona, USA, which I conducted. The FFTS is the subsystem that combines the two separate beams of the LBT and enables near-infrared interferometry with a significantly large field of view. The FFTS has a cryogenic system and an ambient temperature system which are separated by the baffle system. I redesigned this baffle to guarantee the functionality of the system after the final tests in the Cologne cryostat. The redesign did not affect any scientific performance of LINC-NIRVANA. I show in the final cooldown tests that the baffle fulfills the temperature requirement and stays $<110$ K whereas the moving stages in the ambient system stay $>273$ K, which was not given for the old baffle design. Additionally, I test the tilting flexure of the whole FFTS and show that accurate positioning of the detector and the tracking during observation can be guaranteed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Temperature has profound effects on physiology of ectothermic animals. However, the effects on temperature variation on behavioral traits are poorly studied in contrast to physiological endpoints. This may be important as even small differences in temperatures have large effects on physiological rates including overall metabolism, and behavior is known to be linked to metabolism at least in part. The primary aim of this study was to determine the effects of ambient temperature on boldness responses of a species of fish commonly used in behavioral experiments, the Siamese fighting fish (Betta splendens). At 26°C, subjects were first examined for baseline behaviors over three days, using three different (but complementary) 'open field' type assays tested in a fixed order. Those same fish were next exposed to either the same temperature (26°C) or a higher temperature (30°C) for 10days, and then the same behavioral assays were repeated. Those individuals exposed to increased temperatures reduced their latency to leave the release area (area I), spent more time in area III (farthest from release area), and were more active overall; together we infer these behaviors to reflect an increase in general 'boldness' with increased temperature. Our results add to a limited number of studies of temperature effects on behavioral tendencies in ectotherms that are evident even after some considerable acclimation. From a methodological perspective, our results indicate careful temperature control is needed when studying behavior in this and other species of fish.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-formed steel members are extensively used in the building construction industry, especially in residential, commercial and industrial buildings. In recent times, fire safety has become important in structural design due to increased fire damage to properties and loss of lives. However, past research into the fire performance of cold-formed steel members has been limited, and was confined to compression members. Therefore a research project was undertaken to investigate the structural behaviour of compact cold-formed steel lipped channel beams subject to inelastic local buckling and yielding, and lateral-torsional buckling effects under simulated fire conditions and associated section and member moment capacities. In the first phase of this research, an experimental study based on tensile coupon tests was undertaken to obtain the mechanical properties of elastic modulus and yield strength and the stress-strain relationship of cold-formed steels at uniform ambient and elevated temperatures up to 700oC. The mechanical properties deteriorated with increasing temperature and are likely to reduce the strength of cold-formed beams under fire conditions. Predictive equations were developed for yield strength and elastic modulus reduction factors while a modification was proposed for the stressstrain model at elevated temperatures. These results were used in the numerical modelling phases investigating the section and member moment capacities. The second phase of this research involved the development and validation of two finite element models to simulate the behaviour of compact cold-formed steel lipped channel beams subject to local buckling and yielding, and lateral-torsional buckling effects. Both models were first validated for elastic buckling. Lateral-torsional buckling tests of compact lipped channel beams were conducted at ambient temperature in order to validate the finite element model in predicting the non-linear ultimate strength behaviour. The results from this experimental study did not agree well with those from the developed experimental finite element model due to some unavoidable problems with testing. However, it highlighted the importance of magnitude and direction of initial geometric imperfection as well as the failure direction, and thus led to further enhancement of the finite element model. The finite element model for lateral-torsional buckling was then validated using the available experimental and numerical ultimate moment capacity results from past research. The third phase based on the validated finite element models included detailed parametric studies of section and member moment capacities of compact lipped channel beams at ambient temperature, and provided the basis for similar studies at elevated temperatures. The results showed the existence of inelastic reserve capacity for compact cold-formed steel beams at ambient temperature. However, full plastic capacity was not achieved by the mono-symmetric cold-formed steel beams. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity. Comparison of member capacity results from finite element analyses with current design rules showed that they do not give accurate predictions of lateral-torsional buckling capacities at ambient temperature and hence new design rules were developed. The fourth phase of this research investigated the section and member moment capacities of compact lipped channel beams at uniform elevated temperatures based on detailed parametric studies using the validated finite element models. The results showed the existence of inelastic reserve capacity at elevated temperatures. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity in fire design codes, ambient temperature design codes as well as those proposed by other researchers. The results showed that lateral-torsional buckling capacities are dependent on the ratio of yield strength and elasticity modulus reduction factors and the level of non-linearity in the stress-strain curves at elevated temperatures in addition to the temperature. Current design rules do not include the effects of non-linear stress-strain relationship and therefore their predictions were found to be inaccurate. Therefore a new design rule that uses a nonlinearity factor, which is defined as the ratio of the limit of proportionality to the yield stress at a given temperature, was developed for cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures. This thesis presents the details and results of the experimental and numerical studies conducted in this research including a comparison of results with predictions using available design rules. It also presents the recommendations made regarding the accuracy of current design rules as well as the new developed design rules for coldformed steel beams both at ambient and elevated temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shedding light: Nitroaromatic compounds on gold nanoparticles (3 wt %) supported on ZrO2 can be reduced directly to the corresponding azo compounds when illuminated with visible light or ultraviolet light at 40 °C (see picture). The process occurs with high selectivity and at ambient temperature and pressure, and enables the selection of intermediates that are unstable in thermal reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or intrinsic (retinal) network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18–30 years) with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux). Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO) was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells mediate this circadian variation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of stable isotope ratios δ18O and δ2H are well established in assessment of groundwater systems and their hydrology. The conventional approach is based on x/y plots and relation to various MWL’s, and plots of either ratio against parameters such as Clor EC. An extension of interpretation is the use of 2D maps and contour plots, and 2D hydrogeological vertical sections. An enhancement of presentation and interpretation is the production of “isoscapes”, usually as 2.5D surface projections. We have applied groundwater isotopic data to a 3D visualisation, using the alluvial aquifer system of the Lockyer Valley. The 3D framework is produced in GVS (Groundwater Visualisation System). This format enables enhanced presentation by displaying the spatial relationships and allowing interpolation between “data points” i.e. borehole screened zones where groundwater enters. The relative variations in the δ18O and δ2H values are similar in these ambient temperature systems. However, δ2H better reflects hydrological processes, whereas δ18O also reflects aquifer/groundwater exchange reactions. The 3D model has the advantage that it displays borehole relations to spatial features, enabling isotopic ratios and their values to be associated with, for example, bedrock groundwater mixing, interaction between aquifers, relation to stream recharge, and to near-surface and return irrigation water evaporation. Some specific features are also shown, such as zones of leakage of deeper groundwater (in this case with a GAB signature). Variations in source of recharging water at a catchment scale can be displayed. Interpolation between bores is not always possible depending on numbers and spacing, and by elongate configuration of the alluvium. In these cases, the visualisation uses discs around the screens that can be manually expanded to test extent or intersections. Separate displays are used for each of δ18O and δ2H and colour coding for isotope values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, laminar natural convection flow from a permeable and isothermal vertical surface placed in non-isothermal surroundings is considered. Introducing appropriate transformations into the boundary layer equations governing the flow derives non-similar boundary layer equations. Results of both the analytical and numerical solutions are then presented in the form of skin-friction and Nusselt number. Numerical solutions of the transformed non-similar boundary layer equations are obtained by three distinct solution methods, (i) the perturbation solutions for small � (ii) the asymptotic solution for large � (iii) the implicit finite difference method for all � where � is the transpiration parameter. Perturbation solutions for small and large values of � are compared with the finite difference solutions for different values of pertinent parameters, namely, the Prandtl number Pr, and the ambient temperature gradient n.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the photoinduced conjugation of polymers synthesized via reversible addition−fragmentation chain transfer (RAFT) polymerization with a number of low molecular weight (functional) olefins. Upon irradiation of a solution of an aliphatic alkene and the benzyl dithioacetic acid ester (CPDA) or dodecyl trithiocarbonate (DoPAT) functional poly(alkyl acrylate) at the absorption wavelength of the thiocarbonyl group (315 nm), incorporation of the alkene at the polymer chain-end occurred. The most efficient systems identified with regard to the rate of reaction and yield were poly(butyl acrylate)/CPDA/ethyl vinyl ether (78% monoinsertion product after 1 h) and poly(butyl acrylate)/CPDA/1-pentene (73% insertion product after 7 h) at ambient temperature. An in-depth analysis of the reaction mechanism by 1H NMR and online size-exclusion chromatography-electrospray ionization tandem mass spectrometry (SEC/ESI−MSn) revealed that a possible [2 + 2] photoaddition mechanism of conjugation does not take place. Instead, fast β-cleavage of the photoexcited RAFT-end group with subsequent radical addition of an alkene was observed for all employed systems. The presented reaction thus provides a means of spatial and temporal control for the conjugation of alkenes to thiocarbonyl thio-capped macromolecules via the use of UV radiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.