154 resultados para Altimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of data on the location of hydrothermal fields, seismicity, and satellite altimetry evidences that in mid-ocean ridges with low spreading rate hydrothermal fields tend to be grouped in areas with generally low seismic activity and at intersections of discontinuities and rift zones. Based on this assumption, the Sierra Leone Fracture Zone was studied in 2000 during Cruise 22 of R/V Akademik Nikolaj Strakhov. A study of gabbrodolerite and dolerite showed that sulfide ore minerals in them were formed both by hydrothermal and magmatic processes. An analysis of melt inclusions demonstrated that magmatic complexes formed from a high-temperature (1210-1255°C) low-potassium melt of the N-MORB type. Investigations of fluid inclusions revealed that gabbro and dolerite formed under influence of an active hydrothermal system at temperature 205-226°C. Thus, the Sierra Leone Fracture Zone is considered to be perspective for a discovery of a new hydrothermal field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze 2006-2009 data from four continuous Global Positioning System (GPS) receivers located between 5 and 150 km from the glacier Jakobshavn Isbrae, West Greenland. The GPS stations were established on bedrock to determine the vertical crustal motion due to the unloading of ice from Jakobshavn Isbrae. All stations experienced uplift, but the uplift rate at Kangia North, only 5 km from the glacier front, was about 10 mm/yr larger than the rate at Ilulissat, located only ~45 km further away. This suggests that most of the uplift is due to the unloading of the Earth's surface as Jakobshavn thins and loses mass. Our estimate of Jakobshavn's contribution to uplift rates at Kangia North and Ilulissat are 14.6 ± 1.7 mm/yr and 4.9 ± 1.1 mm/yr, respectively. The observed rates are consistent with a glacier thinning model based on repeat altimeter surveys from NASA's Airborne Topographic Mapper (ATM), which shows that Jakobshavn lost mass at an average rate of 22 ± 2 km**3/yr between 2006 and 2009. At Kangia North and Ilulissat, the predicted uplift rates computed using thinning estimates from the ATM laser altimetry are 12.1 ± 0.9 mm/yr and 3.2 ± 0.3 mm/yr, respectively. The observed rates are slightly larger than the predicted rates. The fact that the GPS uplift rates are much larger closer to Jakobshavn than further away, and are consistent with rates inferred using the ATM-based glacier thinning model, shows that GPS measurements of crustal motion are a potentially useful method for assessing ice-mass change models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the CryoSat Cal/Val activities and the pre-site survey for an ice core drilling contributing to the International Partnerships in Ice Core Sciences (IPICS), ground based kinematic GPS measurements were conducted in early 2007 in the vicinity of the German overwintering station Neumayer (8.25° W and 70.65° S). The investigated area comprises the regions of the ice tongues Halvfarryggen and Søråsen, which rise from the Ekströmisen to a maximum of about 760 m surface elevation, and have an areal extent of about 100 km x 50 km each. Available digital elevation models (DEMs) from radar altimetry and the Antarctic Digital Database show elevation differences of up to hundreds of meters in this region, which necessitated an accurate survey of the conditions on-site. An improved DEM of the Ekströmisen surroundings is derived by a combination of highly accurate ground based GPS measurements, satellite derived laser altimetry data (ICESat), airborne radar altimetry (ARA), and radio echo sounding (RES). The DEM presented here achieves a vertical accuracy of about 1.3 m and can be used for improved ice dynamic modeling and mass balance studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aral Sea is located in an arid region with much sand and salt deposits in the surrounding barren open land. Hence, significant displacements of sediments into the lakebed by the action of wind, water, gravity, or snow are likely. The bathymetry of the lake was last observed in the 1960s, and within the last half century, the structure of the lakebed has changed. Based on satellite observations of the temporal changes of shoreline (Landsat optical remote sensing) and water level (multi-mission satellite altimetry) over more than one decade an updated bathymetric chart for the East Basin of the Aral Sea has been generated. During this time, the geometry of the shallow East Basin experienced strong fluctuations due to the occurrence of periods of drying and strong inflow. By the year 2014 the East Basin fell dry. The dynamic behavior of the basin allowed for estimating the lake's bathymetry from a series of satellite-based information. The river mouth made its impression in the present East Aral Sea, because its shrinking led to the inflow of much sediment into the lake's interior. In addition, salt deposits along the shorelines increased the corresponding elevation, a phenomenon that is more pronounced in the reduced lakebed because of increased salinity. It must be noted that height estimates from satellite altimetry were only possible down to a minimum elevation of 27 m above sea level due to a lack of reliable altimetry data over the largely reduced water surface. In order to construct a complete bathymetric chart of the lakebed of the East Aral Sea heights below 27 m were obtained solely from Landsat optical images following the SRB (Selected Region Boundary) approach as described by Singh et al. (2015).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although sea-ice extent in the Bellingshausen-Amundsen (BA) seas sector of the Antarctic has shown significant decline over several decades, there is not enough data to draw any conclusion on sea-ice thickness and its change for the BA sector, or for the entire Southern Ocean. This paper presents our results of snow and ice thickness distributions from the SIMBA 2007 experiment in the Bellingshausen Sea, using four different methods (ASPeCt ship observations, downward-looking camera imaging, ship-based electromagnetic induction (EM) sounding, and in situ measurements using ice drills). A snow freeboard and ice thickness model generated from in situ measurements was then applied to contemporaneous ICESat (satellite laser altimetry) measured freeboard to derive ice thickness at the ICESat footprint scale. Errors from in situ measurements and from ICESat freeboard estimations were incorporated into the model, so a thorough evaluation of the model and uncertainty of the ice thickness estimation from ICESat are possible. Our results indicate that ICESat derived snow freeboard and ice thickness distributions (asymmetrical unimodal tailing to right) for first-year ice (0.29 ± 0.14 m for mean snow freeboard and 1.06 ± 0.40 m for mean ice thickness), multi-year ice (0.48 ± 0.26 and 1.59 ± 0.75 m, respectively), and all ice together (0.42 ± 0.24 and 1.38 ± 0.70 m, respectively) for the study area seem reasonable compared with those values from the in situ measurements, ASPeCt observations, and EM measurements. The EM measurements can act as an appropriate supplement for ASPeCt observations taken hourly from the ship's bridge and provide reasonable ice and snow distributions under homogeneous ice conditions. Our proposed approaches: (1) of using empirical equations relating snow freeboard to ice thickness based on in situ measurements and (2) of using isostatic equations that replace snow depth with snow freeboard (or empirical equations that convert freeboard to snow depth), are efficient and important ways to derive ice thickness from ICESat altimetry at the footprint scale for Antarctic sea ice. Spatial and temporal snow and ice thickness from satellite altimetry for the BA sector and for the entire Southern Ocean is therefore possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CMCC Global Ocean Physical Reanalysis System (C-GLORS) is used to simulate the state of the ocean in the last decades. It consists of a variational data assimilation system (OceanVar), capable of assimilating all in-situ observations along with altimetry data, and a forecast step performed by the ocean model NEMO coupled with the LIM2 sea-ice model. KEY STRENGTHS: - Data are available for a large number of ocean parameters - An extensive validation has been conducted and is freely available - The reanalysis is performed at high resolution (1/4 degree) and spans the last 30 years KEY LIMITATIONS: - Quality may be discontinuos and depend on observation coverage - Uncertainty estimates are simply derived through verification skill scores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By incorporating recently available remote sensing data, we investigated the mass balance for all individual tributary glacial basins of the Lambert Glacier-Amery Ice Shelf system, East Antarctica. On the basis of the ice flow information derived from SAR interferometry and ICESat laser altimetry, we have determined the spatial configuration of eight tributary drainage basins of the Lambert-Amery glacial system. By combining the coherence information from SAR interferometry and the texture information from SAR and MODIS images, we have interpreted and refined the grounding line position. We calculated ice volume flux of each tributary glacial basin based on the ice velocity field derived from Radarsat three-pass interferometry together with ice thickness data interpolated from Australian and Russian airborne radio echo sounding (RES) surveys and inferred from ICESat laser altimetry data. Our analysis reveals that three tributary basins have a significant net positive imbalance, while five other subbasins are slightly positive or close to zero balance. Overall, in contrast to previous studies, we find that the grounded ice in Lambert Glacier-Amery Ice Shelf system has a positive mass imbalance of 22.9 ± 4.4 Gt/a. The net basal melting for the entire Amery Ice Shelf is estimated to be 27.0 ± 7.0 Gt/a. The melting rate decreases rapidly from the grounding zone to the ice shelf front. Significant basal refreezing is detected in the downstream section of the ice shelf. The mass balance estimates for both the grounded ice sheet and the ice shelf mass differ substantially from other recent estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake ice change is one of the sensitive indicators of regional and global climate change. Different sources of data are used in monitoring lake ice phenology nowadays. Visible and Near Infrared bands of imagery (VNIR) are well suited for the observation of freshwater ice change, for example data from AVHRR and MODIS. Active and passive microwave data are also used for the observation of lake ice, e.g., from satellite altimetry and radiometry, backscattering coefficient from QuickSCAT, brightness temperature (Tb) from SSM/I, SMMR, and AMSR-E. Most of the studies are about lake ice cover phenology, while few studies focus on lake ice thickness. For example, Hall et al. using 5 GHz (6 cm) radiometer data showed a good relationship between Tb and ice thickness. Kang et al. found the seasonal evolution of Tb at 10.65 GHz and 18.7 GHz from AMSR-E to be strongly influenced by ice thickness. Many studies on lake ice phenology have been carried out since the 1970s in cold regions, especially in Canada, the USA, Europe, the Arctic, and Antarctica. However, on the Tibetan Plateau, very little research has focused on lake ice-cover change; only a small number of published papers on Qinghai Lake ice observations. The main goal of this study is to investigate the change in lake ice phenology at Nam Co on the Tibetan Plateau using MODIS and AMSR-E data (monitoring the date of freeze onset, the formation of stable ice cover, first appearance of water, and the complete disappearance of ice) during the period 2000-2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge of ice sheet surface topography and the location of the ice divides are essential for ice dynamic modeling. An improved digital elevation model (DEM) of Dronning Maud Land (DML), Antarctica, is presented in this paper. It is based on ground-based kinematic GPS profiles, airborne radar altimetry, and data of the airborne radio-echo sounding system, as well as spaceborne laser altimetry from NASA's Ice, Cloud and land Elevation Satellite (ICESat). The accuracy of ICESat ice sheet altimetry data in the area of investigation is discussed. The location of the ice divides is derived from aspect calculation of the topography and is verified with several velocity data derived from repeated static GPS measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we demonstrate the applicability of using altimetry data and Landsat imagery to provide the most accurate digital elevation model (DEM) of Australia's largest playa lake - Lake Eyre. We demonstrate through the use of geospatial techniques a robust assessment of lake area and volume of recent lake-filling episodes whilst also providing the most accurate estimates of area and volume for larger lake filling episodes that occurred throughout the last glacial cycle. We highlight that at a depth of 25 m Lake Mega-Eyre would merge with the adjacent Lake Mega-Frome to form an immense waterbody with a combined area of almost 35,000 km**2 and a combined volume of ~520 km**3. This would represent a vast water body in what is now the arid interior of the Australian continent. The improved DEM is more reliable from a geomorphological and hydrological perspective and allows a more accurate assessment of water balance under the modern hydrological regime. The results presented using GLAS/ICESat data suggest that earlier historical soundings were correct and the actual lowest topographic point in Australia is -15.6 m below sea level. The results also contrast nicely the different basin characteristics of two adjacent lake systems; Lake Eyre and Lake Frome.