113 resultados para Alouatta palliata
Resumo:
Conclusive evidence was provided that gamma 1, the upstream of the two linked simian gamma-globin loci (5'-gamma 1-gamma 2-3'), is a pseudogene in a major group of New World monkeys. Sequence analysis of PCR-amplified genomic fragments of predicted sizes revealed that all extant genera of the platyrrhine family Atelidae [Lagothrix (woolly monkeys), Brachyteles (woolly spider monkeys), Ateles (spider monkeys), and Alouatta (howler monkeys)] share a large deletion that removed most of exon 2, all of intron 2 and exon 3, and much of the 3' flanking sequence of gamma 1. The fact that two functional gamma-globin genes were not present in early ancestors of the Atelidae (and that gamma 1 was the dispensible gene) suggests that for much or even all of their evolution, platyrrhines have had gamma 2 as the primary fetally expressed gamma-globin gene, in contrast to catarrhines (e.g., humans and chimpanzees) that have gamma 1 as the primary fetally expressed gamma-globin gene. Results from promoter sequences further suggest that all three platyrrhine families (Atelidae, Cebidae, and Pitheciidae) have gamma 2 rather than gamma 1 as their primary fetally expressed gamma-globin gene. The implications of this suggestion were explored in terms of how gene redundancy, regulatory mutations, and distance of each gamma-globin gene from the locus control region were possibly involved in the acquisition and maintenance of fetal, rather than embryonic, expression.
Resumo:
Primates have X chromosome genes for cone photopigments with sensitivity maxima from 535 to 562 nm. Old World monkeys and apes (catarrhines) and the New World ( platyrrhine) genus Alouatta have separate genes for 535-nm ( medium wavelength; M) and 562-nm ( long wavelength; L) pigments. These pigments, together with a 425-nm ( short wavelength) pigment, permit trichromatic color vision. Other platyrrhines and prosimians have a single X chromosome gene but often with alleles for two or three M/L photopigments. Consequently, heterozygote females are trichromats, but males and homozygote females are dichromats. The criteria that affect the evolution of M/L alleles and maintain genetic polymorphism remain a puzzle, but selection for finding food may be important. We compare different types of color vision for detecting more than 100 plant species consumed by tamarins ( Saguinus spp.) in Peru. There is evidence that both frequency-dependent selection on homozygotes and heterozygote advantage favor M/L polymorphism and that trichromatic color vision is most advantageous in dim light. Also, whereas the 562-nm allele is present in all species, the occurrence of 535- to 556-nm alleles varies between species. This variation probably arises because trichromatic color vision favors widely separated pigments and equal frequencies of 535/543- and 562-nm alleles, whereas in dichromats, long-wavelength pigment alleles are fitter.
Resumo:
© 2016 Springer Science+Business Media New YorkResearchers studying mammalian dentitions from functional and adaptive perspectives increasingly have moved towards using dental topography measures that can be estimated from 3D surface scans, which do not require identification of specific homologous landmarks. Here we present molaR, a new R package designed to assist researchers in calculating four commonly used topographic measures: Dirichlet Normal Energy (DNE), Relief Index (RFI), Orientation Patch Count (OPC), and Orientation Patch Count Rotated (OPCR) from surface scans of teeth, enabling a unified application of these informative new metrics. In addition to providing topographic measuring tools, molaR has complimentary plotting functions enabling highly customizable visualization of results. This article gives a detailed description of the DNE measure, walks researchers through installing, operating, and troubleshooting molaR and its functions, and gives an example of a simple comparison that measured teeth of the primates Alouatta and Pithecia in molaR and other available software packages. molaR is a free and open source software extension, which can be found at the doi:10.13140/RG.2.1.3563.4961(molaR v. 2.0) as well as on the Internet repository CRAN, which stores R packages.
Resumo:
v. 17, n. 2, p. 296-302, abr./jun. 2016.