1000 resultados para Al-Dschunaina
Resumo:
Effective “hydrodynamic” radii governing infiltration kinetics of reactive Al-Mg melts into alumina preforms were found to be three orders of magnitude smaller than the average pore size of the packed bed and also smaller compared with the kinetics for a nonreactive system. A sinusoidal capillary model was developed to predict flow kinetics within the packed bed. For the reactive system, two factors were ascribed for additional melt retardation: (1) different intrinsic wettabilities of the two liquids on alumina, thereby leading to significantly different “effective” local contact angles; and (2) local solute depletion from the meniscus, which was incorporated as a time-dependent contact angle.
Resumo:
The tie-lines representing the inter-crystalline ion exchange equilibria between the NiCr2O4-NiAl2O4 spinet solid solution and Cr2O3-Al2O3 corundum solid solution are determined by electron microprobe andEDAX pointcountanalysis of the oxide phases equilibrated with metallic Ni at 1373 K. The component activities in the spinet solid solution are derived from the tie-lines and thermodynamic data for Cr2O3-Al2O3 solid solution available in the literature. The Gibbs energy of mixing of the spinet solid solution calculated from the experimental data is discussed in relation to the values derived from the cation distribution models which assume random mixing of cations on both tetrahedral and octahedral sites. Positive deviation from the models is observed indicating significant positive enthalpy contribution arising form the size mismatch between Al+3 and Ni+2 ions on the tetrahedral site and Al+3, Ni+2 and Cr+3 on the octahedral site. Variation of the oxygen potential for threephase equilibrium involving metallic nickel, spinet solid solution and corundum solid solution is computed as a function of composition of the solid solutions at 1373 K. The oxygen potential exhibits a minimum at aluminum cationic fraction eta(Al)/(eta(Al) + eta(Cr)) = 0.524 in the oxide solid solutions.
Resumo:
The layered double hydroxides (LDHs) of Co with trivalent cations decompose irreversibly to yield oxides with the spinel structure. Spinel formation is aided by the oxidation of Co(II) to Co(III) in the ambient atmosphere. When the decomposition is carried out under N-2, the oxidation of Co(II) is suppressed, and the resulting oxide has the rock salt structure. Thus, the Co-Al-CO32-/Cl- LDHs yield oxides of the type Co1- Al-x(2x/3)rectangle O-x/3, which are highly metastable, given the large defect concentration. This defect oxide rapidly reverts back to the original hydroxide on soaking in a Na2CO3 solution. Interlayer NO3- anions, on the other hand, decompose generating a highly oxidizing atmosphere, whereby the Co-Al-NO3- LDH decomposes to form the spinel phase even in a N-2 atmosphere. The oxide with the defect rock salt structure formed by the thermal decomposition of the Co-Fe-CO32- LDH under N2, on soaking in a Na2CO3 solution, follows a different kinetic pathway and undergoes a solution transformation into the inverse spinel Co(Co, Fe)(2)O-4. Fe3+ has a low octahedral crystal field stabilization energy and therefore prefers the tetrahedral coordination offered by the structure of the inverse spinel rather than the octahedral coordination of the parent LDH. Similar considerations do not hold in the case of Ga- and In-containing LDHs, given the considerable barriers to the diffusion of M3+ (M=Ga, In) from octahedral to tetrahedral sites owing to their large size. Consequently, the In-containing oxide residue reverts back to the parent hydroxide, whereas this reconstruction is partial in the case of the Ga-containing oxide. These studies show that the reversible thermal behavior offers a competing kinetic pathway to spinel formation. Suppression of the latter induces the reversible behavior in an LDH that otherwise decomposes irreversibly to the spinel.
Resumo:
The influence of 0.03 and 0.08 at. % Ag additions on the clustering of Zn atoms in an Al-4.4 at. % Zn alloy has been studied by resistometry. The effect of quenching and ageing temperatures shows that the ageing-ratio method of calculating the vacancy-solute atom binding energy is not applicable to these alloys. Zone-formation in Al-Zn is unaffected by Ag additions, but the zone-reversion process seems to be influenced. Apparent vacancy-formation energies in the binary and ternary alloys have been used to evaluate the v-Ag atom binding energy as 0.21 eV. It is proposed that, Ag and Zn being similar in size, the relative vacancy binding results from valency effects, and that in Al-Zn-Ag alloys clusters of Zn and Ag may form simultaneously, unaffected by the presence of each other. © 1970 Chapman and Hall Ltd.
Resumo:
Isochronal and isothermal ageing experiments have been carried out to determine the influence of 0.01 at. % addition of a second solute on the clustering rate in the quenched Al-4,4 a/o Zn alloy. The influence of quenching and ageing temperatures has been interpreted to obtain the apparent vacancy formation and vacancy migration energies in the various ternary alloys. Using a vacancy-aided clustering model the following values of binding free energy have been evaluated: Ce-0.18; Dy-0.24; Fe-0.18; Li-0.25; Mn-0.27; Nb-0.18; Pt-0.23; Sb-0.21; Si-0.30; Y-0.25; and Yb-0.23 (± 0.02 eV). These binding energy values refer to that between a solute atom and a single vacancy. The values of vacancy migration energy (c. 0.4 eV) and the experimental activation energy for solute diffusion (c. 1.1 eV) are unaffected by the presence of the ternary atoms in the Al-Zn alloy.
Resumo:
The slow reaction in an Al-5 wt.% Ag alloy has been investigated by resistivity measurements. The "slope change" method gave an activation energy of 1.25 eV for silver diffusion during the slow reaction. The existence of an excess concentration of vacancies in equilibrium with the dislocation loops seems to be responsible for the slow reaction. The presence of silver inhibits the nucleation of dislocation loops by holding up the quenched-in vacancies in solution. There is no indication of the presence of a third stage in the low-temperature ageing process of this alloy.
Resumo:
The mechanical properties of Al-Zn-Mg alloy reinforced with SiCP composites prepared by solidification route were studied by altering the matrix strength with different heat treatments. With respect to the control alloy, the composites have shown similar ageing behaviour in terms of microhardness data at 135 degrees C. It was shown that although composites exhibited enhanced modulus values, the strengthening was found to be dependent on the damage that is occurring during straining. Thus the initial matrix strength plays an important role in determining the strengthening. Consequently, compression data had shown a different trend compared to tension. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The variety of electron diffraction patterns arising from the decagonal phase has been explored using a stereographic analysis for generating the important zone axes as intersection points corresponding to important relvectors. An indexing scheme employing a set of five vectors and an orthogonal vector has been followed. A systematic tilting from the decagonal axis to one of the twofold axes has been adopted to generate a set of experimental diffraction patterns corresponding to the expected patterns from the stereographic analysis with excellent agreement.