864 resultados para Airport Infrastructure
Resumo:
Purpose – The purpose of this paper is to develop a conceptual framework that can be used to identify capabilities needed in the management of infrastructure assets. Design/methodology/approach – This paper utilises a qualitative approach to analyse secondary data in order to develop a conceptual framework that identifies capabilities for strategic infrastructure asset management. Findings – In an external business environment that is undergoing rapid change, it is more appropriate to focus on factors internal to the organisation such as resources and capabilities as a basis to develop competitive advantage. However, there is currently very little understanding of the internal capabilities that are appropriate for infrastructure asset management. Therefore, a conceptual framework is needful to guide infrastructure organisations in the identification of capabilities. Research limitations/implications – This is a conceptual paper and future empirical research should be conducted to validate the propositions made in the paper. Practical implications – The paper clearly argues the need for infrastructure organisations to adopt a systematic approach to identifying the capabilities needed in the management of strategic infrastructure assets. The discussion on the impact of essential capabilities is useful in providing the impetus for managers who operate in a deregulated infrastructure business landscape to review their existing strategies. Originality/value – The paper provides a new perspective on how asset managers can create value for their organisations by investing in the relevant capabilities.
Resumo:
Physical infrastructure assets are important components of our society and our economy. They are usually designed to last for many years, are expected to be heavily used during their lifetime, carry considerable load, and are exposed to the natural environment. They are also normally major structures, and therefore present a heavy investment, requiring constant management over their life cycle to ensure that they perform as required by their owners and users. Given a complex and varied infrastructure life cycle, constraints on available resources, and continuing requirements for effectiveness and efficiency, good management of infrastructure is important. While there is often no one best management approach, the choice of options is improved by better identification and analysis of the issues, by the ability to prioritise objectives, and by a scientific approach to the analysis process. The abilities to better understand the effect of inputs in the infrastructure life cycle on results, to minimise uncertainty, and to better evaluate the effect of decisions in a complex environment, are important in allocating scarce resources and making sound decisions. Through the development of an infrastructure management modelling and analysis methodology, this thesis provides a process that assists the infrastructure manager in the analysis, prioritisation and decision making process. This is achieved through the use of practical, relatively simple tools, integrated in a modular flexible framework that aims to provide an understanding of the interactions and issues in the infrastructure management process. The methodology uses a combination of flowcharting and analysis techniques. It first charts the infrastructure management process and its underlying infrastructure life cycle through the time interaction diagram, a graphical flowcharting methodology that is an extension of methodologies for modelling data flows in information systems. This process divides the infrastructure management process over time into self contained modules that are based on a particular set of activities, the information flows between which are defined by the interfaces and relationships between them. The modular approach also permits more detailed analysis, or aggregation, as the case may be. It also forms the basis of ext~nding the infrastructure modelling and analysis process to infrastructure networks, through using individual infrastructure assets and their related projects as the basis of the network analysis process. It is recognised that the infrastructure manager is required to meet, and balance, a number of different objectives, and therefore a number of high level outcome goals for the infrastructure management process have been developed, based on common purpose or measurement scales. These goals form the basis of classifYing the larger set of multiple objectives for analysis purposes. A two stage approach that rationalises then weights objectives, using a paired comparison process, ensures that the objectives required to be met are both kept to the minimum number required and are fairly weighted. Qualitative variables are incorporated into the weighting and scoring process, utility functions being proposed where there is risk, or a trade-off situation applies. Variability is considered important in the infrastructure life cycle, the approach used being based on analytical principles but incorporating randomness in variables where required. The modular design of the process permits alternative processes to be used within particular modules, if this is considered a more appropriate way of analysis, provided boundary conditions and requirements for linkages to other modules, are met. Development and use of the methodology has highlighted a number of infrastructure life cycle issues, including data and information aspects, and consequences of change over the life cycle, as well as variability and the other matters discussed above. It has also highlighted the requirement to use judgment where required, and for organisations that own and manage infrastructure to retain intellectual knowledge regarding that infrastructure. It is considered that the methodology discussed in this thesis, which to the author's knowledge has not been developed elsewhere, may be used for the analysis of alternatives, planning, prioritisation of a number of projects, and identification of the principal issues in the infrastructure life cycle.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.
Resumo:
With increasing pressure to deliver environmentally friendly and socially responsible highway infrastructure projects, stakeholders are also putting significant focus on the early identification of financial viability and outcomes for these projects. Infrastructure development typically requires major capital input, which may cause serious financial constraints for investors. The push for sustainability has added new dimensions to the evaluation of highway projects, particularly on the cost front. Comprehensive analysis of the cost implications of implementing place sustainable measures in highway infrastructure throughout its lifespan is highly desirable and will become an essential part of the highway development process and a primary concern for decision makers. This paper discusses an ongoing research which seeks to identify cost elements and issues related to sustainable measures for highway infrastructure projects. Through life-cycle costing analysis (LCCA), financial implications of pursuing sustainability, which are highly concerned by the construction stakeholders, have been assessed to aid the decision making when contemplating the design, development and operation of highway infrastructure. An extensive literature review and evaluation of project reports from previous Australian highway projects was first conducted to reveal all potential cost elements. This provided the foundation for a questionnaire survey, which helped identify those specific issues and related costs that project stakeholders consider to be most critical in the Australian industry context. Through the survey, three key stakeholders in highway infrastructure development, namely consultants, contractors and government agencies, provided their views on the specific selection and priority ranking of the various categories. Findings of the survey are being integrated into proven LCCA models for further enhancement. A new LCCA model will be developed to assist the stakeholders to evaluate costs and investment decisions and reach optimum balance between financial viability and sustainability deliverables.
Resumo:
This paper reports on the study of passenger experiences and how passengers interact with services, technology and processes at an airport. As part of our research, we have followed people through the airport from check-in to security and from security to boarding. Data was collected by approaching passengers in the departures concourse of the airport and asking for their consent to be videotaped. Data was collected and coded and the analysis focused on both discretionary and process related passenger activities. Our findings show the interdependence between activities and passenger experiences. Within all activities, passengers interact with processes, domain dependent technology, services, personnel and artifacts. These levels of interaction impact on passenger experiences and are interdependent. The emerging taxonomy of activities consists of (i) ownership related activities, (ii) group activities, (iii) individual activities (such as activities at the domain interfaces) and (iv) concurrent activities. This classification is contributing to the development of descriptive models of passenger experiences and how these activities affect the facilitation and design of future airports.
Resumo:
The concept of asset management is not a new but an evolving idea that has been attracting attention of many organisations operating and/or owning some kind of infrastructure assets. The term asset management have been used widely with fundamental differences in interpretation and usage. Regardless of the context of the usage of the term, asset management implies the process of optimising return by scrutinising performance and making key strategic decisions throughout all phases of an assets lifecycle (Sarfi and Tao, 2004). Hence, asset management is a philosophy and discipline through which organisations are enabled to more effectively deploy their resources to provide higher levels of customer service and reliability while balancing financial objectives. In Australia, asset management made its way into the public works in 1993 when the Australian Accounting Standard Board issued the Australian Accounting Standard 27 – AAS27. Standard AAS27 required government agencies to capitalise and depreciate assets rather than expense them against earnings. This development has indirectly forced organisations managing infrastructure assets to consider the useful life and cost effectiveness of asset investments. The Australian State Treasuries and the Australian National Audit Office was the first organisation to formalise the concepts and principles of asset management in Australia in which they defined asset management as “ a systematic, structured process covering the whole life of an asset”(Australian National Audit Office, 1996). This initiative led other Government bodies and industry sectors to develop, refine and apply the concept of asset management in the management of their respective infrastructure assets. Hence, it can be argued that the concept of asset management has emerged as a separate and recognised field of management during the late 1990s. In comparison to other disciplines such as construction, facilities, maintenance, project management, economics, finance, to name a few, asset management is a relatively new discipline and is clearly a contemporary topic. The primary contributors to the literature in asset management are largely government organisations and industry practitioners. These contributions take the form of guidelines and reports on the best practice of asset management. More recently, some of these best practices have been made to become a standard such as the PAS 55 (IAM, 2004, IAM, 2008b) in UK. As such, current literature in this field tends to lack well-grounded theories. To-date, while receiving relatively more interest and attention from empirical researchers, the advancement of this field, particularly in terms of the volume of academic and theoretical development is at best moderate. A plausible reason for the lack of advancement is that many researchers and practitioners are still unaware of, or unimpressed by, the contribution that asset management can make to the performance of infrastructure asset. This paper seeks to explore the practices of organisations that manage infrastructure assets to develop a framework of strategic infrastructure asset management processes. It will begin by examining the development of asset management. This is followed by the discussion on the method to be adopted for this paper. Next, is the discussion of the result form case studies. It first describes the goals of infrastructure asset management and how they can support the broader business goals. Following this, a set of core processes that can support the achievement of business goals are provided. These core processes are synthesised based on the practices of asset managers in the case study organisations.
Resumo:
Most infrastructure project developments are complex in nature, particularly in the planning phase. During this stage, many vague alternatives are tabled - from the strategic to operational level. Human judgement and decision making are characterised by biases, errors and the use of heuristics. These factors are intangible and hard to measure because they are subjective and qualitative in nature. The problem with human judgement becomes more complex when a group of people are involved. The variety of different stakeholders may cause conflict due to differences in personal judgements. Hence, the available alternatives increase the complexities of the decision making process. Therefore, it is desirable to find ways of enhancing the efficiency of decision making to avoid misunderstandings and conflict within organisations. As a result, numerous attempts have been made to solve problems in this area by leveraging technologies such as decision support systems. However, most construction project management decision support systems only concentrate on model development and neglect fundamentals of computing such as requirement engineering, data communication, data management and human centred computing. Thus, decision support systems are complicated and are less efficient in supporting the decision making of project team members. It is desirable for decision support systems to be simpler, to provide a better collaborative platform, to allow for efficient data manipulation, and to adequately reflect user needs. In this chapter, a framework for a more desirable decision support system environment is presented. Some key issues related to decision support system implementation are also described.
Resumo:
Urban infrastructure along the hard forms such as roads, electricity, water and sewers also includes the soft forms such as research, training, innovation and technology. Knowledge and creativity are keys to soft infrastructure and socioeconomic development. Many city administrations around the world adjust their endogenous development strategies increasingly by investing in soft infrastructure and aiming for a knowledge-based development. At this point, the mapping and management of knowledge asset of cities has become a critical issue for promoting creative urban regions. The chapter scrutinizes the relations between knowledge assets and urban infrastructures and examines the management model to improve soft infrastructure provision.
Resumo:
Organisations owning and managing infrastructure asset are constantly striving to obtain the greatest lifetime value from their infrastructure assets. Many such organisations have adopted the concept of “asset management” with the aim of improving the performance of their infrastructure assets. This paper evaluates the adoption of asset management to improve performance in the context of organisations managing infrastructure assets. Relevant previous research studies on main barriers to the adoption of asset management are reviewed. Analysis of these findings, together with deductive reasoning, leads to the development of the proposed improvement strategies. Three issues were identified as barrier to the advancement of the concept of asset management. They are (1) lack of recognition, (2) fragmentation; and (3) growing complexity. To overcome these issues, this paper suggests that the organisations manage infrastructure assets must (1) adopt a more strategic approach in the management of infrastructure assets, (2) develop a framework of strategic infrastructure asset management processes, and (3) identify the core capabilities needed in the management of infrastructure assets. This paper presents the direction for further research to advance the concept of asset management in the management of infrastructure asset.
Resumo:
In many countries, the main providers for major infrastructure projects are government or public agencies. Public infrastructure projects includes economic and social infrastructure such as transportation, education and health facilities. Most decision-making models for delivery of public infrastructure projects are heavily weighted towards financial/economic factors. In Australia, public participation is an essential instrument in the procurement of infrastructure and development within Australia. This study reviews the public participation, values and interests in the procurement of infrastructure projects in Australia, and identifies the research direction in this research area in order to improve the decision-making models that capture stakeholder social, economical and environmental concerns in infrastructure projects.
Resumo:
Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century helped improve urban infrastructure management and influenced quality of life. Telecommunication technologies make it possible for people to deliver text, audio and video material using wired, wireless or fibre-optic networks. Technologies convergence amongst these digital devices continues to create new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones. This chapter discusses the recent developments in telecommunication networks and trends in convergence technologies, their implications for urban infrastructure planning, and for the quality of life of urban residents.
Resumo:
Sustainable urban development and the liveability of a city are increasingly important issues in the context of land use planning and infrastructure management. In recent years, the promotion of sustainable urban development in Australia and overseas is facing various physical, socio-economic and environmental challenges. These challenges and problems arise from the lack of capability of local governments to accommodate the needs of the population and economy in a relatively short timeframe. The planning of economic growth and development is often dealt with separately and not included in the conventional land use planning process. There is also a sharp rise in the responsibilities and roles of local government for infrastructure planning and management. This increase in responsibilities means that local elected officials and urban planners have less time to prepare background information and make decisions. The Brisbane Urban Growth Model has proven initially successful in providing a dynamic platform to ensure timely and coordinated delivery of urban infrastructure. Most importantly, this model is the first step for local governments in moving toward a systematic approach to pursuing sustainable and effective urban infrastructure management.