980 resultados para Agricultural Production Function
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
With Chinas rapid economic development during the last decades, the national demand for livestock products has quadrupled within the last 20 years. Most of that increase in demand has been answered by subsidized industrialized production systems, while million of smallholders, which still provide the larger share of livestock products in the country, have been neglected. Fostering those systems would help China to lower its strong urban migration streams, enhance the livelihood of poorer rural population and provide environmentally save livestock products which have a good chance to satisfy customers demand for ecological food. Despite their importance, China’s smallholder livestock keepers have not yet gained appropriate attention from governmental authorities and researchers. However, profound analysis of those systems is required so that adequate support can lead to a better resource utilization and productivity in the sector. To this aim, this pilot study analyzes smallholder livestock production systems in Xishuangbanna, located in southern China. The area is bordered by Lao and Myanmar and geographically counts as tropical region. Its climate is characterized by dry and temperate winters and hot summers with monsoon rains from May to October. While the regionis plain, at about 500 m asl above sea level in the south, outliers of the Himalaya mountains reach out into the north of Xishuangbanna, where the highest peak reaches 2400 m asl. Except of one larger city, Jinghong, Xishuangbanna mainly is covered by tropical rainforest, areas under agricultural cultivation and villages. The major income is generated through inner-Chinese tourism and agricultural production. Intensive rubber plantations are distinctive for the lowland plains while small-scaled traditional farms are scattered in the mountane regions. In order to determine the current state and possible future chances of smallholder livestock production in that region, this study analyzed the current status of the smallholder livestock sector in the Naban River National Nature Reserve (NRNNR), an area which is largely representative for the whole prefecture. It covers an area of about 50square kilometer and reaches from 470 up to 2400 m asl. About 5500 habitants of different ethnic origin are situated in 24 villages. All data have been collected between October 2007 and May 2010. Three major objectives have been addressed in the study: 1. Classifying existing pig production systems and exploring respective pathways for development 2. Quantifying the performance of pig breeding systemsto identify bottlenecks for production 3. Analyzing past and current buffalo utilization to determine the chances and opportunities of buffalo keeping in the future In order to classify the different pig production s ystems, a baseline survey (n=204, stratified cluster sampling) was carried out to gain data about livestock species, numbers, management practices, cultivated plant species and field sizes as well associo-economic characteristics. Sampling included two clusters at village level (altitude, ethnic affiliation), resulting in 13 clusters of which 13-17 farms were interviewed respectively. Categorical Principal Component Analysis (CatPCA) and a two-step clustering algorithm have been applied to identify determining farm characteristics and assort recorded households into classes of livestock production types. The variables keep_sow_yes/no, TLU_pig, TLU_buffalo, size_of_corn_fields, altitude_class, size_of_tea_plantationand size_of_rubber_fieldhave been found to be major determinants for the characterization of the recorded farms. All farms have extensive or semi-intensive livestock production, pigs and buffaloes are predominant livestock species while chicken and aquaculture are available but play subordinate roles for livelihoods. All pig raisers rely on a single local breed, which is known as Small Ear Pig (SMEP) in the region. Three major production systemshave been identified: Livestock-corn based LB; 41%), rubber based (RB; 39%) and pig based (PB;20%) systems. RB farms earn high income from rubber and fatten 1.9 ±1.80 pigs per household (HH), often using purchased pig feed at markets. PB farms own similar sized rubber plantations and raise 4.7 ±2.77 pigs per HH, with fodder mainly being cultivated and collected in theforest. LB farms grow corn, rice and tea and keep 4.6 ±3.32 pigs per HH, also fed with collected and cultivated fodder. Only 29% of all pigs were marketed (LB: 20%; RB: 42%; PB: 25%), average annual mortality was 4.0 ±4.52 pigs per farm (LB: 4.6 ±3.68; RB: 1.9 ±2.14; PB: 7.1 ±10.82). Pig feed mainly consists of banana pseudo stem, corn and rice hives and is prepared in batches about two to three times per week. Such fodder might be sufficient in energy content but lacks appropriate content of protein. Pigs therefore suffer from malnutrition, which becomes most critical in the time before harvest season around October. Farmers reported high occurrences of gastrointestinal parasites in carcasses and often pig stables were wet and filled with manure. Deficits in nutritional and hygienic management are major limits for development and should be the first issues addressed to improve productivity. SME pork was found to be known and referred by local customers in town and by richer lowland farmers. However, high prices and lacking availability of SME pork at local wet-markets were the reasons which limited purchase. If major management constraints are overcome, pig breeders (PB and LB farms) could increase the share of marketed pigs for town markets and provide fatteners to richer RB farmers. RB farmers are interested in fattening pigs for home consumption but do not show any motivation for commercial pig raising. To determine the productivity of input factors in pig production, eproductive performance, feed quality and quantity as well as weight development of pigs under current management were recorded. The data collection included a progeny history survey covering 184 sows and 437 farrows, bi-weekly weighing of 114 pigs during a 16-months time-span on 21 farms (10 LB and 11 PB) as well as the daily recording of feed quality and quantity given to a defined number of pigs on the same 21 farms. Feed samples of all recorded ingredients were analyzed for their respective nutrient content. Since no literature values on thedigestibility of banana pseudo stem – which is a major ingredient of traditional pig feed in NRNNR – were found, a cross-sectional digestibility trial with 2x4 pigs has been conducted on a station in the research area. With the aid of PRY Herd Life Model, all data have been utilized to determine thesystems’ current (Status Quo = SQ) output and the productivity of the input factor “feed” in terms of saleable life weight per kg DM feed intake and monetary value of output per kg DM feed intake.Two improvement scenarios were simulated, assuming 1) that farmers adopt a culling managementthat generates the highest output per unit input (Scenario 1; SC I) and 2) that through improved feeding, selected parameters of reproduction are improved by 30% (SC II). Daily weight gain averaged 55 ± 56 g per day between day 200 and 600. The average feed energy content of traditional feed mix was 14.92 MJ ME. Age at first farrowing averaged 14.5 ± 4.34 months, subsequent inter-farrowing interval was 11.4 ± 2.73 months. Littersize was 5.8 piglets and weaning age was 4.3 ± 0.99 months. 18% of piglets died before weaning. Simulating pig production at actualstatus, it has been show that monetary returns on inputs (ROI) is negative (1:0.67), but improved (1:1.2) when culling management was optimized so that highest output is gained per unit feed input. If in addition better feeding, controlled mating and better resale prices at fixed dates were simulated, ROI further increased to 1:2.45, 1:2.69, 1:2.7 and 1:3.15 for four respective grower groups. Those findings show the potential of pork production, if basic measures of improvement are applied. Futureexploration of the environment, including climate, market-season and culture is required before implementing the recommended measures to ensure a sustainable development of a more effective and resource conserving pork production in the future. The two studies have shown that the production of local SME pigs plays an important role in traditional farms in NRNNR but basic constraints are limiting their productivity. However, relatively easy approaches are sufficient for reaching a notable improvement. Also there is a demand for more SME pork on local markets and, if basic constraints have been overcome, pig farmers could turn into more commercial producers and provide pork to local markets. By that, environmentally safe meat can be offered to sensitive consumers while farmers increase their income and lower the risk of external shocks through a more diverse income generating strategy. Buffaloes have been found to be the second important livestock species on NRNNR farms. While they have been a core resource of mixed smallholderfarms in the past, the expansion of rubber tree plantations and agricultural mechanization are reasons for decreased swamp buffalo numbers today. The third study seeks to predict future utilization of buffaloes on different farm types in NRNNR by analyzing the dynamics of its buffalo population and land use changes over time and calculating labor which is required for keeping buffaloes in view of the traction power which can be utilized for field preparation. The use of buffaloes for field work and the recent development of the egional buffalo population were analyzed through interviews with 184 farmers in 2007/2008 and discussions with 62 buffalo keepers in 2009. While pig based farms (PB; n=37) have abandoned buffalo keeping, 11% of the rubber based farms (RB; n=71) and 100% of the livestock-corn based farms (LB; n=76) kept buffaloes in 2008. Herd size was 2.5 ±1.80 (n=84) buffaloes in early 2008 and 2.2 ±1.69 (n=62) in 2009. Field work on own land was the main reason forkeeping buffaloes (87.3%), but lending work buffaloes to neighbors (79.0%) was also important. Other purposes were transport of goods (16.1%), buffalo trade (11.3%) and meat consumption(6.4%). Buffalo care required 6.2 ±3.00 working hours daily, while annual working time of abuffalo was 294 ±216.6 hours. The area ploughed with buffaloes remained constant during the past 10 years despite an expansion of land cropped per farm. Further rapid replacement of buffaloes by tractors is expected in the near future. While the work economy is drastically improved by the use of tractors, buffaloes still can provide cheap work force and serve as buffer for economic shocks on poorer farms. Especially poor farms, which lack alternative assets that could quickly be liquidizedin times of urgent need for cash, should not abandon buffalo keeping. Livestock has been found to be a major part of small mixed farms in NRNNR. The general productivity was low in both analyzed species, buffaloes and pigs. Productivity of pigs can be improved through basic adjustments in feeding, reproductive and hygienic management, and with external support pig production could further be commercialized to provide pork and weaners to local markets and fattening farms. Buffalo production is relatively time intensive, and only will be of importance in the future to very poor farms and such farms that cultivate very small terraces on steep slopes. These should be encouraged to further keep buffaloes. With such measures, livestock production in NRNNR has good chances to stay competitive in the future.
Resumo:
This exploratory study evaluated biophysical, cultural and socio-economic factors affecting crop production and land utilisation in the Nkonkobe Municipality, South Africa. The study sought to establish what farmers in the area perceive as serious threats to crop production, drivers for land abandonment, and how best current agricultural production could be intensified. The farmers’ perspectives were assessed through interviews using semi-structured and open-ended questionnaires. The results of the study revealed declining crop productivity and increase in land abandonment in the Municipality. The biophysical drivers of land abandonment were low and erratic rainfall and land degradation while the socio-economic drivers were labour shortages due to old age and youth movement to cities, lack of farming equipment and security concerns. The most abandoned crops were maize, sorghum and wheat. This trend was attributed to the labour intensiveness of cereal production and a shift in dietary preference to purchased rice. These findings should be factored in any programmes that seek to increase land utilisation and crop productivity in the Municipality.
Resumo:
The aim of this paper is to emphasize the capacity and resilience of rural communities in regard to sustainable food security by adopting innovative approaches to irrigation. The shift from subsistence to commercial agriculture is promoted as a means to sustainable development. An analysis of the efficacy of irrigation schemes in Zimbabwe suggests that, in terms of providing sustainable agricultural production, they have neither been cost-effective nor have they provided long-term food security to their beneficiaries. This is certainly true of Shashe Scheme and most others in Beitbridge District. The Shashe Irrigation Scheme project represents a bold attempt at developing a fresh approach to the management of communal land irrigation schemes through a Private Public Community Partnership. The model illustrated represents a paradigm shift from subsistence agriculture to a system based on new technologies, market linkages and community ownership that build resilience and lead to sustainable food security and economic prosperity.
Resumo:
Vegetables represent a main source of micro-nutrients which can improve the health status of malnourished poor in the world. Spinach (Spinacia oleracea L.) is a popular leafy vegetable in many countries which is rich with several important micro-nutrients. Thus, consuming Spinach helps to overcome micro-nutrient deficiencies. Pests and pathogens act as major yield constraints in food production. Root-knot nematodes, Meloidogyne species, constitute a large group of highly destructive plant pests. Spinach is found to be highly susceptible for these nematode attacks. Though agricultural production has largely benefited from modern technologies and innovations, some important dimensions which can minimize the yield losses have been neglected by most of the growers. Pre-plant or initial nematode density in soil is a crucial biotic factor which is directly responsible for crop losses. Hence, information on preplant nematode densities and the corresponding damage is of vital importance to develop successful control procedures to enhance crop production. In the present study, effect of seven initial densities of M. incognita, i.e., 156, 312, 625, 1250, 2,500, 5,000 and 10,000 infective juveniles (IJs)/plant (equivalent to 1000cm3 soil) on the growth and root infestation on potted spinach plants was determined in a screen house. In order to ensure a high accuracy, root infestation was ascertained by the number of galls formed, the percentage galled-length of feeder roots and galled-feeder roots, and egg production, per plant. Fifty days post-inoculation, shoot length and weight, and root length were suppressed at the lowest IJs density. However, the pathogenic effect was pronounced at the highest density at which 43%, 46% and 45% reduction in shoot length and weight, and root length, respectively, was recorded. The highest reduction in root weight (26%) was detected at the second highest density. The Number of galls and percentage galled-length of feeder roots/per plant showed significant progressive increase across the increasing IJs density with the highest mean value of 432.3 and 54%, respectively. The two shoot growth parameters and root length showed significant inverse relationship with the increasing gall formation. Moreover, the shoot and root length were shown to be mutually dependent on each other. Suppression of shoot growth of spinach greatly affects the grower’s economy. Hence, control measures are essentially needed to ensure a better production of spinach via reducing the pre-plant density below the level of 0.156 IJs/cm3.
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
Technology involving genetic modification of crops has the potential to make a contribution to rural poverty reduction in many developing countries. Thus far, pesticide-producing Bacillus thuringensis (Bt) varieties of cotton have been the main GM crops under cultivation in developing nations. Several studies have evaluated the farm-level performance of Bt varieties in comparison to conventional ones by estimating production technology, and have mostly found Bt technology to be very successful in raising output and/or reducing pesticide input. However, the production risk properties of this technology have not been studied, although they are likely to be important to risk-averse smallholders. This study investigates the output risk aspects of Bt technology by estimating two 'flexible risk' production function models allowing technology to independently affect the mean and higher moments of output. The first is the popular Just-Pope model and the second is a more general 'damage control' flexible risk model. The models are applied to cross-sectional data on South African smallholders, some of whom used Bt varieties. The results show no evidence that a 'risk-reduction' claim can be made for Bt technology. Indeed, there is some evidence to support the notion that the technology increases output risk, implying that simple (expected) profit computations used in past evaluations may overstate true benefits.
Resumo:
Smallholdings in the rural areas of northwest Syria are a result of land fragmentation that is due to inheritance. Because of rapid population growth combined with land fragmentation, these smallholdings are increasing and cannot sustain the rural households whose sizes and needs are also increasing rapidly. This situation has led to increasing numbers of mates migrating to urban areas in Syria and to neighbouring countries looking for work opportunities. In addition, recent agricultural intensification trends seem to have led to the emergence of a waged labour force which, in the absence of male workers owing to significant rates of migration, is now predominantly female. Agricultural labour use depends upon household characteristics and resources (type of labour used, gender of labour waged/exchanged/familial). The article attempts to present a comprehensive analysis of household labour use in distinctive farming systems in one region of Syria that has undergone great change in recent decades, and examines the changes in the composition of the agricultural labour force. Secondary information, rapid rural appraisals and formal farm surveys were used to gather information on the households in a study area where different farming systems coexist. The results show that the decrease in landholding size, the resulting male migration, and land intensification have resulted in the expansion of female labour in agricultural production, which has been termed in this research a 'feminization of agricultural labour'. This suggests that agricultural research and extension services will have to work more with women farmers and farm workers, seek their wisdom and involve them in technology and tran, fer This is not easy in conservative societies but requires research and extension institutions to take this reality into consideration in their programmes.
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
Technology involving genetic modification of crops has the potential to make a contribution to rural poverty reduction in many developing countries. Thus far, pesticide-producing Bacillus thuringensis (Bt) varieties of cotton have been the main GM crops under cultivation in developing nations. Several studies have evaluated the farm-level performance of Bt varieties in comparison to conventional ones by estimating production technology, and have mostly found Bt technology to be very successful in raising output and/or reducing pesticide input. However, the production risk properties of this technology have not been studied, although they are likely to be important to risk-averse smallholders. This study investigates the output risk aspects of Bt technology by estimating two 'flexible risk' production function models allowing technology to independently affect the mean and higher moments of output. The first is the popular Just-Pope model and the second is a more general 'damage control' flexible risk model. The models are applied to cross-sectional data on South African smallholders, some of whom used Bt varieties. The results show no evidence that a 'risk-reduction' claim can be made for Bt technology. Indeed, there is some evidence to support the notion that the technology increases output risk, implying that simple (expected) profit computations used in past evaluations may overstate true benefits.
Resumo:
1. Reductions in resource availability, associated with land-use change and agricultural intensification in the UK and Europe, have been linked with the widespread decline of many farmland bird species over recent decades. However, the underlying ecological processes which link resource availability and population trends are poorly understood. 2. We construct a spatial depletion model to investigate the relationship between the population persistence of granivorous birds within the agricultural landscape and the temporal dynamics of stubble field availability, an important source of winter food for many of those species. 3. The model is capable of accurately predicting the distribution of a given number of finches and buntings amongst patches of different stubble types in an agricultural landscape over the course of a winter and assessing the relative value of different landscapes in terms of resource availability. 4. Sensitivity analyses showed that the model is relatively robust to estimates of energetic requirements, search efficiency and handling time but that daily seed survival estimates have a strong influence on model fit. Understanding resource dynamics in agricultural landscapes is highlighted as a key area for further research. 5. There was a positive relationship between the predicted number of bird days supported by a landscape over-winter and the breeding population trend for yellowhammer Emberiza citrinella, a species for which survival has been identified as the primary driver of population dynamics, but not for linnet Carduelis cannabina, a species for which productivity has been identified as the primary driver of population dynamics. 6. Synthesis and applications. We believe this model can be used to guide the effective delivery of over-winter food resources under agri-environment schemes and to assess the impacts on granivorous birds of changing resource availability associated with novel changes in land use. This could be very important in the future as farming adapts to an increasingly dynamic trading environment, in which demands for increased agricultural production must be reconciled with objectives for environmental protection, including biodiversity conservation.
Resumo:
Transition to diets that are high in saturated fat and sugar has caused a global public health concern as the pattern of food consumption is a mayor modifiable risk factor for chronic non-communicable diseases Although agri food systems are intimately associated with this transition, agriculture and health sectors are largely disconnected in their priorities policy, and analysis with neither side considering the complex inter relation between agri trade patterns of food consumption health, and development We show the importance of connection of these perspectives through estimation of the effect of adopting a healthy diet on population health, agricultural production trade the economy and livelihoods, with a computable general equilibrium approach On the basis of case studies from the UK and Brazil we suggest that benefits of a healthy diet policy will vary substantially between different populations, not only because of population dietary intake but also because of agricultural production trade and other economic factors
Resumo:
We estimate and test two alternative functional forms, which have been used in the growth literature, representing the aggregate production function for a panel of countries: the model of Mankiw, Romer and Weil (Quarterly Journal of Economics, 1992), and a mincerian formulation of schooling-returns to skills. Estimation is performed using instrumental-variable techniques, and both functional forms are confronted using a Box-Cox test, since human capital inputs enter in levels in the mincerian specification and in logs in the extended neoclassical growth model.
Resumo:
We estimate and test two alternative functional forms representing the aggregate production function for a panel of countries: the extended neoclassical growth model, and a mincerian formulation of schooling-returns to skills. Estimation is performed using instrumentalvariable techniques, and both functional forms are confronted using a Box-Cox test, since human capital inputs enter in levels in the mincerian specification and in logs in the extended neoclassical growth model. Our evidence rejects the extended neoclassical growth model in favor of the mincerian specification, with an estimated capital share of about 42%, a marginal return to education of about 7.5% per year, and an estimated productivity growth of about 1.4% per year. Differences in productivity cannot be disregarded as an explanation of why output per worker varies so much across countries: a variance decomposition exercise shows that productivity alone explains 54% of the variation in output per worker across countries.
Resumo:
Peru agricultural exports have increased in recent years due to (i) free trade agreements with many countries (United States, Canada, European Union, China, Thailand, Singapore, Japan, Chile, among others), (ii) an increasing international demand for healthy products, (iii) country´s economic development and (iv) more private investments in this sector (Velazco 2012). Also, if we can compare among Peru three main regions (Coast, Andean highlands and the Jungle), It is the Coast (western region) that has a developed agricultural production due to unique weather conditions, private investments, public infrastructure, transport costs and quality of land (Gomez, 2008). This country development is also related to the production of non-traditional products for export like asparagus, artichokes, capsicums, bananas, grapes, among others; produced by agro industrial companies and small farmers and that are mainly labor intensive (Gomez, 2008 and Velazco, 2012). This very successful export diversification and self-discovery process was the result of a combination of strong natural comparative advantages (mainly excellent agro climatic conditions) and a significant innovation effort. It meant the introduction and expansion of new products and markets, the entry of new firms, and experimental research and the adoption of new techniques and process technologies developed abroad (in irrigation, crop management, post-harvesting, sanitary control, storage and packing) to produce high-quality, niche (gourmet) and higher value-added products, in line with consumer trends in sophisticated food markets. In products such as asparagus, mango, organic coffee and capsicums, Peru has become a leading world exporter (OECD). For this reason one of the government main tasks for the next years is to meet urgent agriculture producer’s needs in the areas of technological Innovation and business management (MINAG). In this context, this thesis analyzes the applicability of a new technology – the mechatronic arms – specifically to capsicums production sector in Peru. We chose Capsicums production sector (paprika, chilli pepper) because is mainly labor intensive and is the sector where my family company (DIROSE SAC) operates. This innovation consists in a 40 arms mechatronic combine, and it was first created in order to improve the efficiency on the labor intensive phase of harvest for this kind of agriculture products. It is estimated that a laborer with brief training operating the machine would be equivalent to 40 people that not only would work during daytime, but also on the night shift as well. Also, using this new technology can allow a company to make additional crops that would increase their yields and annual revenues. This thesis was developed as a business plan to make this new product available for other agriculture companies that operates in the capsicums production sector in Peru; however, this new technology has the potential to be modified in order to be available to other kind of agriculture products, in Peru and other countries.