968 resultados para Agile iterative development


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a heuristic model for chaperonin-facilitated protein folding, the iterative annealing mechanism, based on theoretical descriptions of "rugged" conformational free energy landscapes for protein folding, and on experimental evidence that (i) folding proceeds by a nucleation mechanism whereby correct and incorrect nucleation lead to fast and slow folding kinetics, respectively, and (ii) chaperonins optimize the rate and yield of protein folding by an active ATP-dependent process. The chaperonins GroEL and GroES catalyze the folding of ribulose bisphosphate carboxylase at a rate proportional to the GroEL concentration. Kinetically trapped folding-incompetent conformers of ribulose bisphosphate carboxylase are converted to the native state in a reaction involving multiple rounds of quantized ATP hydrolysis by GroEL. We propose that chaperonins optimize protein folding by an iterative annealing mechanism; they repeatedly bind kinetically trapped conformers, randomly disrupt their structure, and release them in less folded states, allowing substrate proteins multiple opportunities to find pathways leading to the most thermodynamically stable state. By this mechanism, chaperonins greatly expand the range of environmental conditions in which folding to the native state is possible. We suggest that the development of this device for optimizing protein folding was an early and significant evolutionary event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global Software Development (GSD) is an emerging distributive software engineering practice, in which a higher communication overhead due to temporal and geographical separation among developers is traded with gains in reduced development cost, improved flexibility and mobility for developers, increased access to skilled resource-pools and convenience of customer involvements. However, due to its distributive nature, GSD faces many fresh challenges in aspects relating to project coordination, awareness, collaborative coding and effective communication. New software engineering methodologies and processes are required to address these issues. Research has shown that, with adequate support tools, Distributed Extreme Programming (DXP) – a distributive variant of an agile methodology – Extreme Programming (XP) can be both efficient and beneficial to GDS projects. In this paper, we present the design and realization of a collaborative environment, called Moomba, which assists a distributed team in both instantiation and execution of a DXP process in GSD projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to survive in the increasingly customer-oriented marketplace, continuous quality improvement marks the fastest growing quality organization’s success. In recent years, attention has been focused on intelligent systems which have shown great promise in supporting quality control. However, only a small number of the currently used systems are reported to be operating effectively because they are designed to maintain a quality level within the specified process, rather than to focus on cooperation within the production workflow. This paper proposes an intelligent system with a newly designed algorithm and the universal process data exchange standard to overcome the challenges of demanding customers who seek high-quality and low-cost products. The intelligent quality management system is equipped with the ‘‘distributed process mining” feature to provide all levels of employees with the ability to understand the relationships between processes, especially when any aspect of the process is going to degrade or fail. An example of generalized fuzzy association rules are applied in manufacturing sector to demonstrate how the proposed iterative process mining algorithm finds the relationships between distributed process parameters and the presence of quality problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global market has become increasingly dynamic, unpredictable and customer-driven. This has led to rising rates of new product introduction and turbulent demand patterns across product mixes. As a result, manufacturing enterprises were facing mounting challenges to be agile and responsive to cope with market changes, so as to achieve the competitiveness of producing and delivering products to the market timely and cost-effectively. This paper introduces a currency-based iterative agent bidding mechanism to effectively and cost-efficiently integrate the activities associated with production planning and control, so as to achieve an optimised process plan and schedule. The aim is to enhance the agility of manufacturing systems to accommodate dynamic changes in the market and production. The iterative bidding mechanism is executed based on currency-like metrics; each operation to be performed is assigned with a virtual currency value and agents bid for the operation if they make a virtual profit based on this value. These currency values are optimised iteratively and so does the bidding process based on new sets of values. This is aimed at obtaining better and better production plans, leading to near-optimality. A genetic algorithm is proposed to optimise the currency values at each iteration. In this paper, the implementation of the mechanism and the test case simulation results are also discussed. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses demand and supply chain management and examines how artificial intelligence techniques and RFID technology can enhance the responsiveness of the logistics workflow. This proposed system is expected to have a significant impact on the performance of logistics networks by virtue of its capabilities to adapt unexpected supply and demand changes in the volatile marketplace with the unique feature of responsiveness with the advanced technology, Radio Frequency Identification (RFID). Recent studies have found that RFID and artificial intelligence techniques drive the development of total solution in logistics industry. Apart from tracking the movement of the goods, RFID is able to play an important role to reflect the inventory level of various distribution areas. In today’s globalized industrial environment, the physical logistics operations and the associated flow of information are the essential elements for companies to realize an efficient logistics workflow scenario. Basically, a flexible logistics workflow, which is characterized by its fast responsiveness in dealing with customer requirements through the integration of various value chain activities, is fundamental to leverage business performance of enterprises. The significance of this research is the demonstration of the synergy of using a combination of advanced technologies to form an integrated system that helps achieve lean and agile logistics workflow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-impedance analysis (BIA) provides a rapid, non-invasive technique for body composition estimation. BIA offers a convenient alternative to standard techniques such as MRI, CT scan or DEXA scan for selected types of body composition analysis. The accuracy of BIA is limited because it is an indirect method of composition analysis. It relies on linear relationships between measured impedance and morphological parameters such as height and weight to derive estimates. To overcome these underlying limitations of BIA, a multi-frequency segmental bio-impedance device was constructed through a series of iterative enhancements and improvements of existing BIA instrumentation. Key features of the design included an easy to construct current-source and compact PCB design. The final device was trialled with 22 human volunteers and measured impedance was compared against body composition estimates obtained by DEXA scan. This enabled the development of newer techniques to make BIA predictions. To add a ‘visual aspect’ to BIA, volunteers were scanned in 3D using an inexpensive scattered light gadget (Xbox Kinect controller) and 3D volumes of their limbs were compared with BIA measurements to further improve BIA predictions. A three-stage digital filtering scheme was also implemented to enable extraction of heart-rate data from recorded bio-electrical signals. Additionally modifications have been introduced to measure change in bio-impedance with motion, this could be adapted to further improve accuracy and veracity for limb composition analysis. The findings in this thesis aim to give new direction to the prediction of body composition using BIA. The design development and refinement applied to BIA in this research programme suggest new opportunities to enhance the accuracy and clinical utility of BIA for the prediction of body composition analysis. In particular, the use of bio-impedance to predict limb volumes which would provide an additional metric for body composition measurement and help distinguish between fat and muscle content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years Agile methodologies appeared as a reaction to traditional ways of developing software and acknowledge the need for an alternative to documentation driven, heavyweight software development processes. This paper shortly presents a combination between Rational Uni ed Process and an agile approach for software development of e-business applications. The resulting approach is described stressing on the strong aspects of both combined methodologies. The article provides a case study of the proposed methodology which was developed and executed in a successful e-project in the area of the embedded systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera's point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ∼10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera's PSF. The algorithm can also improve dose estimation and treatment planning.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Sickle Cell Disease (SCD) is a genetic hematological disorder that affects more than 7 million people globally (NHLBI, 2009). It is estimated that 50% of adults with SCD experience pain on most days, with 1/3 experiencing chronic pain daily (Smith et al., 2008). Persons with SCD also experience higher levels of pain catastrophizing (feelings of helplessness, pain rumination and magnification) than other chronic pain conditions, which is associated with increases in pain intensity, pain behavior, analgesic consumption, frequency and duration of hospital visits, and with reduced daily activities (Sullivan, Bishop, & Pivik, 1995; Keefe et al., 2000; Gil et al., 1992 & 1993). Therefore effective interventions are needed that can successfully be used manage pain and pain-related outcomes (e.g., pain catastrophizing) in persons with SCD. A review of the literature demonstrated limited information regarding the feasibility and efficacy of non-pharmacological approaches for pain in persons with SCD, finding an average effect size of .33 on pain reduction across measurable non-pharmacological studies. Second, a prospective study on persons with SCD that received care for a vaso-occlusive crisis (VOC; N = 95) found: (1) high levels of patient reported depression (29%) and anxiety (34%), and (2) that unemployment was significantly associated with increased frequency of acute care encounters and hospital admissions per person. Research suggests that one promising category of non-pharmacological interventions for managing both physical and affective components of pain are Mindfulness-based Interventions (MBIs; Thompson et al., 2010; Cox et al., 2013). The primary goal of this dissertation was thus to develop and test the feasibility, acceptability, and efficacy of a telephonic MBI for pain catastrophizing in persons with SCD and chronic pain.

Methods: First, a telephonic MBI was developed through an informal process that involved iterative feedback from patients, clinical experts in SCD and pain management, social workers, psychologists, and mindfulness clinicians. Through this process, relevant topics and skills were selected to adapt in each MBI session. Second, a pilot randomized controlled trial was conducted to test the feasibility, acceptability, and efficacy of the telephonic MBI for pain catastrophizing in persons with SCD and chronic pain. Acceptability and feasibility were determined by assessment of recruitment, attrition, dropout, and refusal rates (including refusal reasons), along with semi-structured interviews with nine randomly selected patients at the end of study. Participants completed assessments at baseline, Week 1, 3, and 6 to assess efficacy of the intervention on decreasing pain catastrophizing and other pain-related outcomes.

Results: A telephonic MBI is feasible and acceptable for persons with SCD and chronic pain. Seventy-eight patients with SCD and chronic pain were approached, and 76% (N = 60) were enrolled and randomized. The MBI attendance rate, approximately 57% of participants completing at least four mindfulness sessions, was deemed acceptable, and participants that received the telephonic MBI described it as acceptable, easy to access, and consume in post-intervention interviews. The amount of missing data was undesirable (MBI condition, 40%; control condition, 25%), but fell within the range of expected missing outcome data for a RCT with multiple follow-up assessments. Efficacy of the MBI on pain catastrophizing could not be determined due to small sample size and degree of missing data, but trajectory analyses conducted for the MBI condition only trended in the right direction and pain catastrophizing approached statistically significance.

Conclusion: Overall results showed that at telephonic group-based MBI is acceptable and feasible for persons with SCD and chronic pain. Though the study was not able to determine treatment efficacy nor powered to detect a statistically significant difference between conditions, participants (1) described the intervention as acceptable, and (2) the observed effect sizes for the MBI condition demonstrated large effects of the MBI on pain catastrophizing, mental health, and physical health. Replication of this MBI study with a larger sample size, active control group, and additional assessments at the end of each week (e.g., Week 1 through Week 6) is needed to determine treatment efficacy. Many lessons were learned that will guide the development of future studies including which MBI strategies were most helpful, methods to encourage continued participation, and how to improve data capture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prior work of our research group, that quantified the alarming levels of radiation dose to patients with Crohn’s disease from medical imaging and the notable shift towards CT imaging making these patients an at risk group, provided context for this work. CT delivers some of the highest doses of ionising radiation in diagnostic radiology. Once a medical imaging examination is deemed justified, there is an onus on the imaging team to endeavour to produce diagnostic quality CT images at the lowest possible radiation dose to that patient. The fundamental limitation with conventional CT raw data reconstruction was the inherent coupling of administered radiation dose with observed image noise – the lower the radiation dose, the noisier the image. The renaissance, rediscovery and refinement of iterative reconstruction removes this limitation allowing either an improvement in image quality without increasing radiation dose or maintenance of image quality at a lower radiation dose compared with traditional image reconstruction. This thesis is fundamentally an exercise in optimisation in clinical CT practice with the objectives of assessment of iterative reconstruction as a method for improvement of image quality in CT, exploration of the associated potential for radiation dose reduction, and development of a new split dose CT protocol with the aim of achieving and validating diagnostic quality submillisiever t CT imaging in patients with Crohn’s disease. In this study, we investigated the interplay of user-selected parameters on radiation dose and image quality in phantoms and cadavers, comparing traditional filtered back projection (FBP) with iterative reconstruction algorithms. This resulted in the development of an optimised, refined and appropriate split dose protocol for CT of the abdomen and pelvis in clinical patients with Crohn’s disease allowing contemporaneous acquisition of both modified and conventional dose CT studies. This novel algorithm was then applied to 50 patients with a suspected acute complication of known Crohn’s disease and the raw data reconstructed with FBP, adaptive statistical iterative reconstruction (ASiR) and model based iterative reconstruction (MBIR). Conventional dose CT images with FBP reconstruction were used as the reference standard with which the modified dose CT images were compared in terms of radiation dose, diagnostic findings and image quality indices. As there are multiple possible user-selected strengths of ASiR available, these were compared in terms of image quality to determine the optimal strength for this modified dose CT protocol. Modified dose CT images with MBIR were also compared with contemporaneous abdominal radiograph, where performed, in terms of diagnostic yield and radiation dose. Finally, attenuation measurements in organs, tissues, etc. with each reconstruction algorithm were compared to assess for preservation of tissue characterisation capabilities. In the phantom and cadaveric models, both forms of iterative reconstruction examined (ASiR and MBIR) were superior to FBP across a wide variety of imaging protocols, with MBIR superior to ASiR in all areas other than reconstruction speed. We established that ASiR appears to work to a target percentage noise reduction whilst MBIR works to a target residual level of absolute noise in the image. Modified dose CT images reconstructed with both ASiR and MBIR were non-inferior to conventional dose CT with FBP in terms of diagnostic findings, despite reduced subjective and objective indices of image quality. Mean dose reductions of 72.9-73.5% were achieved with the modified dose protocol with a mean effective dose of 1.26mSv. MBIR was again demonstrated superior to ASiR in terms of image quality. The overall optimal ASiR strength for the modified dose protocol used in this work is ASiR 80%, as this provides the most favourable balance of peak subjective image quality indices with less objective image noise than the corresponding conventional dose CT images reconstructed with FBP. Despite guidelines to the contrary, abdominal radiographs are still often used in the initial imaging of patients with a suspected complication of Crohn’s disease. We confirmed the superiority of modified dose CT with MBIR over abdominal radiographs at comparable doses in detection of Crohn’s disease and non-Crohn’s disease related findings. Finally, we demonstrated (in phantoms, cadavers and in vivo) that attenuation values do not change significantly across reconstruction algorithms meaning preserved tissue characterisation capabilities with iterative reconstruction. Both adaptive statistical and model based iterative reconstruction algorithms represent feasible methods of facilitating acquisition diagnostic quality CT images of the abdomen and pelvis in patients with Crohn’s disease at markedly reduced radiation doses. Our modified dose CT protocol allows dose savings of up to 73.5% compared with conventional dose CT, meaning submillisievert imaging is possible in many of these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: increasing numbers of patients are surviving critical illness, but survival may be associated with a constellation of physical and psychological sequelae that can cause on going disability and reduced health-related quality of life. Limited evidence currently exists to guide the optimum structure, timing, and content of rehabilitation programmes. There is a need to both develop and evaluate interventions to support and expedite recovery during the post-ICU discharge period. This paper describes the construct development for a complex rehabilitation intervention intended to promote physical recovery following critical illness. The intervention is currently being evaluated in a randomised trial (ISRCTN09412438; funder Chief Scientists Office, Scotland). Methods: the intervention was developed using the Medical Research Council (MRC) framework for developing complex healthcare interventions. We ensured representation from a wide variety of stakeholders including content experts from multiple specialties, methodologists, and patient representation. The intervention construct was initially based on literature review, local observational and audit work, qualitative studies with ICU survivors, and brainstorming activities. Iterative refinement was aided by the publication of a National Institute for Health and Care Excellence guideline (No. 83), publicly available patient stories (Healthtalkonline), a stakeholder event in collaboration with the James Lind Alliance, and local piloting. Modelling and further work involved a feasibility trial and development of a novel generic rehabilitation assistant (GRA) role. Several rounds of external peer review during successive funding applications also contributed to development. Results: the final construct for the complex intervention involved a dedicated GRA trained to pre-defined competencies across multiple rehabilitation domains (physiotherapy, dietetics, occupational therapy, and speech/language therapy), with specific training in post-critical illness issues. The intervention was from ICU discharge to 3 months post-discharge, including inpatient and post-hospital discharge elements. Clear strategies to provide information to patients/families were included. A detailed taxonomy was developed to define and describe the processes undertaken, and capture them during the trial. The detailed process measure description, together with a range of patient, health service, and economic outcomes were successfully mapped on to the modified CONSORT recommendations for reporting non-pharmacologic trial interventions. Conclusions: the MRC complex intervention framework was an effective guide to developing a novel post-ICU rehabilitation intervention. Combining a clearly defined new healthcare role with a detailed taxonomy of process and activity enabled the intervention to be clearly described for the purpose of trial delivery and reporting. These data will be useful when interpreting the results of the randomised trial, will increase internal and external trial validity, and help others implement the intervention if the intervention proves clinically and cost effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera’s point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ~10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera’s PSF. The algorithm can also improve dose estimation and treatment planning.