775 resultados para Agent Based Modeling
Resumo:
One of the key issues in the computational representation of open societies relates to the introduction of norms that help to cope with the heterogeneity, the autonomy and the diversity of interests among their members. Research regarding this issue presents two omissions. One is the lack of a canonical model of norms that facilitates their implementation, and that allows us to describe the processes of reasoning about norms. The other refers to considering, in the model of normative multi-agent systems, the perspective of individual agents and what they might need to effectively reason about the society in which they participate. Both are the concerns of this paper, and the main objective is to present a formal normative framework for agent-based systems.
Resumo:
In this paper we present a concept of an agent-based strategy to allocate services on a Cloud system without overloading nodes and maintaining the system stability with minimum cost. To provide a base for our research we specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. We also present an early version of simulation environment and a prototype of agent-based load balancer implemented in functional language Scala and Akka framework.
Resumo:
Carbon assets have the value of carbon emission reduction in enterprises and are closely relevant to business images and competitiveness. In this paper, the connotation of carbon assets is clarified. The definition of carbon assets in enterprise business contexts are also provided. In addition, an interactive evolution framework is established to demonstrate the emergent property of carbon assets using multi-agent-based simulation, which can bring a new perspective for enterprises to manage their carbon assets and improve low-carbon competitiveness.
Resumo:
This paper presents MASCEM - Multi-Agent Simulator for Electricity Markets improvement towards an enlarged model for Seller Agents coalitions. The simulator has been improved, both regarding its user interface and internal structure. The OOA, used as development platform, version was updated and the multi-agent model was adjusted for implementing and testing several negotiations regarding Seller agents’ coalitions. Seller coalitions are a very important subject regarding the increased relevance of Distributed Generation under liberalised electricity markets.
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.
Resumo:
Group decision making plays an important role in organizations, especially in the present-day economy that demands high-quality, yet quick decisions. Group decision-support systems (GDSSs) are interactive computer-based environments that support concerted, coordinated team efforts toward the completion of joint tasks. The need for collaborative work in organizations has led to the development of a set of general collaborative computer-supported technologies and specific GDSSs that support distributed groups (in time and space) in various domains. However, each person is unique and has different reactions to various arguments. Many times a disagreement arises because of the way we began arguing, not because of the content itself. Nevertheless, emotion, mood, and personality factors have not yet been addressed in GDSSs, despite how strongly they influence results. Our group’s previous work considered the roles that emotion and mood play in decision making. In this article, we reformulate these factors and include personality as well. Thus, this work incorporates personality, emotion, and mood in the negotiation process of an argumentbased group decision-making process. Our main goal in this work is to improve the negotiation process through argumentation using the affective characteristics of the involved participants. Each participant agent represents a group decision member. This representation lets us simulate people with different personalities. The discussion process between group members (agents) is made through the exchange of persuasive arguments. Although our multiagent architecture model4 includes two types of agents—the facilitator and the participant— this article focuses on the emotional, personality, and argumentation components of the participant agent.
Resumo:
Media content personalisation is a major challenge involving viewers as well as media content producer and distributor businesses. The goal is to provide viewers with media items aligned with their interests. Producers and distributors engage in item negotiations to establish the corresponding service level agreements (SLA). In order to address automated partner lookup and item SLA negotiation, this paper proposes the MultiMedia Brokerage (MMB) platform, which is a multiagent system that negotiates SLA regarding media items on behalf of media content producer and distributor businesses. The MMB platform is structured in four service layers: interface, agreement management, business modelling and market. In this context, there are: (i) brokerage SLA (bSLA), which are established between individual businesses and the platform regarding the provision of brokerage services; and (ii) item SLA (iSLA), which are established between producer and distributor businesses about the provision of media items. In particular, this paper describes the negotiation, establishment and enforcement of bSLA and iSLA, which occurs at the agreement and negotiation layers, respectively. The platform adopts a pay-per-use business model where the bSLA define the general conditions that apply to the related iSLA. To illustrate this process, we present a case study describing the negotiation of a bSLA instance and several related iSLA instances. The latter correspond to the negotiation of the Electronic Program Guide (EPG) for a specific end viewer.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Throughout recent years, there has been an increase in the population size, as well as a fast economic growth, which has led to an increase of the energy demand that comes mainly from fossil fuels. In order to reduce the ecological footprint, governments have implemented sustainable measures and it is expected that by 2035 the energy produced from renewable energy sources, such as wind and solar would be responsible for one-third of the energy produced globally. However, since the energy produced from renewable sources is governed by the availability of the respective primary energy source there is often a mismatch between production and demand, which could be solved by adding flexibility on the demand side through demand response (DR). DR programs influence the end-user electricity usage by changing its cost along the time. Under this scenario the user needs to estimate the energy demand and on-site production in advance to plan its energy demand according to the energy price. This work focuses on the development of an agent-based electrical simulator, capable of: (a) estimating the energy demand and on-site generation with a 1-min time resolution for a 24-h period, (b) calculating the energy price for a given scenario, (c) making suggestions on how to maximize the usage of renewable energy produced on-site and to lower the electricity costs by rescheduling the use of certain appliances. The results show that this simulator allows reducing the energy bill by 11% and almost doubling the use of renewable energy produced on-site.
Resumo:
The goal of this work is to develop an Open Agent Architecture for Multilingual information retrieval from Relational Database. The query for information retrieval can be given in plain Hindi or Malayalam; two prominent regional languages of India. The system supports distributed processing of user requests through collaborating agents. Natural language processing techniques are used for meaning extraction from the plain query and information is given back to the user in his/ her native language. The system architecture is designed in a structured way so that it can be adapted to other regional languages of India
Resumo:
Routine activity theory introduced by Cohen& Felson in 1979 states that criminal acts are caused due to the presenceof criminals, vic-timsand the absence of guardians in time and place. As the number of collision of these elements in place and time increases, criminal acts will also increase even if the number of criminals or civilians remains the same within the vicinity of a city. Street robbery is a typical example of routine ac-tivity theory and the occurrence of which can be predicted using routine activity theory. Agent-based models allow simulation of diversity among individuals. Therefore agent based simulation of street robbery can be used to visualize how chronological aspects of human activity influence the incidence of street robbery.The conceptual model identifies three classes of people-criminals, civilians and police with certain activity areas for each. Police exist only as agents of formal guardianship. Criminals with a tendency for crime will be in the search for their victims. Civilians without criminal tendencycan be either victims or guardians. In addition to criminal tendency, each civilian in the model has a unique set of characteristicslike wealth, employment status, ability for guardianship etc. These agents are subjected to random walk through a street environment guided by a Q –learning module and the possible outcomes are analyzed
Resumo:
In many real world contexts individuals find themselves in situations where they have to decide between options of behaviour that serve a collective purpose or behaviours which satisfy one’s private interests, ignoring the collective. In some cases the underlying social dilemma (Dawes, 1980) is solved and we observe collective action (Olson, 1965). In others social mobilisation is unsuccessful. The central topic of social dilemma research is the identification and understanding of mechanisms which yield to the observed cooperation and therefore resolve the social dilemma. It is the purpose of this thesis to contribute this research field for the case of public good dilemmas. To do so, existing work that is relevant to this problem domain is reviewed and a set of mandatory requirements is derived which guide theory and method development of the thesis. In particular, the thesis focusses on dynamic processes of social mobilisation which can foster or inhibit collective action. The basic understanding is that success or failure of the required process of social mobilisation is determined by heterogeneous individual preferences of the members of a providing group, the social structure in which the acting individuals are contained, and the embedding of the individuals in economic, political, biophysical, or other external contexts. To account for these aspects and for the involved dynamics the methodical approach of the thesis is computer simulation, in particular agent-based modelling and simulation of social systems. Particularly conductive are agent models which ground the simulation of human behaviour in suitable psychological theories of action. The thesis develops the action theory HAPPenInGS (Heterogeneous Agents Providing Public Goods) and demonstrates its embedding into different agent-based simulations. The thesis substantiates the particular added value of the methodical approach: Starting out from a theory of individual behaviour, in simulations the emergence of collective patterns of behaviour becomes observable. In addition, the underlying collective dynamics may be scrutinised and assessed by scenario analysis. The results of such experiments reveal insights on processes of social mobilisation which go beyond classical empirical approaches and yield policy recommendations on promising intervention measures in particular.