918 resultados para Ageing And Insulin Secretion
Resumo:
Bone morphogenetic proteins (BMP) are firmly implicated as intra-ovarian regulators of follicle development and steroidogenesis. Here we report a microarray analysis showing that treatment of cultured bovine theca cells (TC) with BMP6 significantly (>2-fold; P<0.01) up- or down-regulated expression of 445 genes. Insulin-like peptide 3 (INSL3) was the most heavily down-regulated gene (-43-fold) with CYP17A1 and other key transcripts involved in TC steroidogenesis including LHCGR, INHA, STAR, CYP11A1 and HSD3B1 also down-regulated. BMP6 also reduced expression of NR5A1 encoding steroidogenic factor-1 known to target the promoter regions of the aforementioned genes. Real-time PCR confirmed these findings and also revealed a marked reduction in expression of INSL3 receptor (RXFP2). Secretion of INSL3 protein and androstenedione were also suppressed suggesting a functional link between BMP and INSL3 pathways in controlling androgen synthesis. RNAi-mediated knockdown of INSL3 reduced INSL3 mRNA and secreted protein level (75 and 94%, respectively) and elicited a 77% reduction in CYP17A1 mRNA level and 83% reduction in androstenedione secretion. Knockdown of RXFP2 also reduced CYP17A1 mRNA level (81%) and androstenedione secretion (88%). Conversely, treatment with exogenous (human) INSL3 increased androstenedione secretion ~2-fold. The CYP17 inhibitor abiraterone abolished androgen secretion and reduced expression of both INSL3 and RXFP2. Collectively, these findings indicate a positive autoregulatory role for INSL3 signaling in maintaining thecal androgen production, and visa versa. Moreover, BMP6-induced suppression of thecal androgen synthesis may be mediated, at least in part, by reduced INSL3-RXFP2 signaling.
Resumo:
Aims To investigate the relationship between adiposity and plasma free fatty acid levels and the influence of total plasma free fatty acid level on insulin sensitivity and β-cell function. Methods An insulin sensitivity index, acute insulin response to glucose and a disposition index, derived from i.v. glucose tolerance minimal model analysis and total fasting plasma free fatty acid levels were available for 533 participants in the Reading, Imperial, Surrey, Cambridge, Kings study. Bivariate correlations were made between insulin sensitivity index, acute insulin response to glucose and disposition index and both adiposity measures (BMI, waist circumference and body fat mass) and total plasma free fatty acid levels. Multivariate linear regression analysis was performed, controlling for age, sex, ethnicity and adiposity. Results After adjustment, all adiposity measures were inversely associated with insulin sensitivity index (BMI: β = −0.357; waist circumference: β = −0.380; body fat mass: β = −0.375) and disposition index (BMI: β = −0.215; waist circumference: β = −0.248; body fat mass: β = −0.221) and positively associated with acute insulin response to glucose [BMI: β = 0.200; waist circumference: β = 0.195; body fat mass β = 0.209 (P values <0.001)]. Adiposity explained 13, 4 and 5% of the variation in insulin sensitivity index, acute insulin response to glucose and disposition index, respectively. After adjustment, no adiposity measure was associated with free fatty acid level, but total plasma free fatty acid level was inversely associated with insulin sensitivity index (β = −0.133), acute insulin response to glucose (β = −0.148) and disposition index [β = −0.218 (P values <0.01)]. Plasma free fatty acid concentration accounted for 1.5, 2 and 4% of the variation in insulin sensitivity index, acute insulin response to glucose and disposition index, respectively. Conclusions Plasma free fatty acid levels have a modest negative association with insulin sensitivity, β-cell secretion and disposition index but no association with adiposity measures. It is unlikely that plasma free fatty acids are the primary mediators of obesity-related insulin resistance or β-cell dysfunction.
Resumo:
We previously described the presence of nicotinamide adenine dinucleotide phosphate reduced form [NAD(P)H] oxidase components in pancreatic beta-cells and its activation by glucose, palmitic acid, and proinflammatory cytokines. In the present study, the importance of the NAD(P)H oxidase complex for pancreatic beta-cell function was examined. Rat pancreatic islets were incubated in the presence of glucose plus diphenyleneiodonium, a NAD(P)H oxidase inhibitor, for 1 h or with the antisense oligonucleotide for p47(PHOX) during 24 h. Reactive oxygen species (ROS) production was determined by a fluorescence assay using 2,7-dichlorodihydrofluorescein diacetate. Insulin secretion, intracellular calcium responses, [U-(14)C] glucose oxidation, and expression of glucose transporter-2, glucokinase and insulin genes were examined. Antisense oligonucleotide reduced p47(PHOX) expression [an important NAD(P)H oxidase cytosolic subunit] and similarly to diphenyleneiodonium also blunted the enzyme activity as indicated by reduction of ROS production. Suppression of NAD(P)H oxidase activity had an inhibitory effect on intracellular calcium responses to glucose and glucose-stimulated insulin secretion by isolated islets. NAD(P)H oxidase inhibition also reduced glucose oxidation and gene expression of glucose transporter-2 and glucokinase. These findings indicate that NAD(P)H oxidase activation plays an important role for ROS production by pancreatic beta-cells during glucose-stimulated insulin secretion. The importance of this enzyme complex for the beta-cell metabolism and the machinery involved in insulin secretion were also shown. (Endocrinology 150: 2197-2201, 2009)
Resumo:
Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.
Resumo:
Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on beta-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P) H oxidase. Thus, ROS derived from OA metabolism via NAD(P) H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in beta-cells. (Endocrinology 152: 3614-3621, 2011)
Resumo:
A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate I associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/maminalian target protein of rapamycin pathway may play a role in this process. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Endurance exercise has been shown to reduce pancreatic islets glucose-stimulated insulin secretion (GSIS). Anaplerotic/cataplerotic pathways are directly related to GSIS signaling. However, the effect of endurance training upon pancreatic islets anaplerotic enzymes is still unknown. In this sense, we tested the hypothesis that endurance exercise decreases GSIS by reducing anaplerotic/cataplerotic enzymes content. Male Wistar rats were randomly assigned to one of the four experimental groups as follows: control sedentary group (CTL), trained 1 day per week (TRE1x), trained 3 days per week (TRE3x) and trained 5 days per week (TRE5x) and submitted to an 8 weeks endurance-training protocol. After the training protocol, pancreatic islets were isolated and incubated with basal (2.8 mM) and stimulating (16.7 mM) glucose concentrations for GSIS measurement by radioimmunoassay. In addition, pyruvate carboxylase (PYC), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), ATP-citrate lyase (ACL) and glutamate dehydrogenase (GDH) content were quantified by western blotting. Our data showed that 8 weeks of chronic endurance exercise reduced GSIS by 50% in a dose-response manner according to weekly exercise frequency. PYC showed significant twofold increase in TRE3x. PYC enhancement was even higher in TRE5x (p < 0.0001). PDH and PDK4 reached significant 25 and 50% enhancement, respectively compared with CTL. ACL and GDH also reported significant 50 and 75% increase, respectively. The absence of exercise-induced correlations among GSIS and anaplerotic/cataplerotic enzymes suggests that exercise may control insulin release by activating other signaling pathways. The observed anaplerotic and cataplerotic enzymes enhancement might be related to beta-cell surviving rather than insulin secretion.
Resumo:
Cathepsin S is a protease important in major histocompatibility complex (MHC) class II antigen presentation and also in degrading the extracellular matrix. Studies, most of them experimental, have shown that cathepsin S is involved in different pathological conditions such as obesity, inflammation, atherosclerosis, diabetes, and cancer. The overall hypothesis of this report is that high levels of circulating cathepsin S, is a biomarker that reflects pathology induced by inflammation and obesity. The overall aim of this report was to investigate possible associations between circulating cathepsin S, inflammation, glucometabolic disturbance, and its associated diseases in the community. As cathepsin S appears to be a novel risk marker for several pathological conditions, we also wanted to examine the effect of dietary intervention on circulating cathepsin S concentrations. This thesis is based on data from three community-based cohorts, the Uppsala longitudinal study of adult men (ULSAM), the prospective investigation of the vasculature in Uppsala seniors (PIVUS), and a post-hoc study from the randomized controlled NORDIET trial. In the first study, we identified a cross-sectional positive association between serum cathepsin S and two markers of cytokine-mediated inflammation, CRP and IL-6. These associations were similar in non-obese individuals. In longitudinal analyses, higher cathepsin S at baseline was associated with higher CRP and IL-6 levels after six years of follow-up. In the second study, we identified a cross-sectional association between increased serum levels of cathepsin S and reduced insulin sensitivity. These associations were similar in non-obese individuals. No significant association was observed between cathepsin S and insulin secretion. In longitudinal analysis, higher cathepsin S levels were associated with an increased risk of developing diabetes during the six-year follow-up. In the third study, we found that higher serum levels of cathepsin S were associated with increased mortality risk. Moreover, in the ULSAM cohort, serum cathepsin S was independently associated with cause-specific mortality from cardiovascular disease and cancer. In the fourth study, we identified that adherence to an ad libitum healthy Nordic diet for 6 weeks slightly decreased the levels of plasma cathepsin S in normal or marginally overweight individuals, relative to the control group. Changes in circulating cathepsin S concentrations were correlated with changes in body weight, LDL-C, and total cholesterol. Conclusion: This thesis shows that circulating cathepsin S is a biomarker that independently reflects inflammation, insulin resistance, the risk of developing diabetes, and mortality risk. Furthermore, a Nordic diet moderately reduced cathepsin S levels in normal-weight and overweight men and women. This effect may be partially mediated by diet-induced weight loss and possibly by reduced LDL-C concentrations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
High protein content in the diet during childhood and adolescence has been associated to the onset insulin-dependent diabetes mellitus. We investigated the effect of interleukin-1 beta (IL-I beta) on insulin secretion, glucose metabolism, and nitrite formation by islets isolated from rats fed with normal protein (NP, 17%) or low protein (LP, 6%) after weaning. Pretreatment of islets with IL-1 beta for 1 h or 34 h inhibited the insulin secretion induced by glucose in both groups, but it was less marked in LP than in NP group. Islets from LP rats exhibited a decreased IL-1 beta -induced nitric oxide (NO) production, lower inhibition of D-[(UC)-C-14]-glucose oxidation to (CO2)-C-14, and less pronounced effect of IL-1 beta on alpha -ketoisocaproic acid-induced insulin secretion than NP islets. However, when the islets were stimulated by high concentrations of K+ the inhibitory effect of IL-1 beta on insulin secretion was not different between groups. In conclusion, protein restriction protects beta -cells of the deleterious effect of IL-1 beta, apparently, by decreasing NO production. The lower NO generation in islets from protein deprived rats may be due to increased free fatty acids oxidation and consequent alteration in Ca2+ homeostasis. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: To better understand the pathogenesis of type 2 diabetes mellitus, insulin secretion and insulin sensitivity (IS) were evaluated in white Brazilians with impaired glucose tolerance (IGT), using the oral glucose tolerance test (OGTT) and the hyperglycemic clamp technique.Methods: Twenty-five IGT subjects were individually matched with normal glucose-tolerant (NGT) subjects for demographic characteristics, At first, they were submitted to the OGTT and plasma glucose and insulin were measured. of the 25 pairs, 20 could participate in the hyperglycemic clamp procedures, at a second visit. All participants had their plasma glucose levels equally increased to 180 mg/dl; this was maintained for three hours by variable glucose infusion. During the procedure, plasma glucose and insulin were measured at established intervals.Results: In the postabsorptive state, the IGT subjects presented higher levels of plasma glucose, blood HbA(1) and serum triglycerides, but similar plasma insulin levels. After the oral glucose load, early and total insulin release, in relation to glucose levels, were respectively, 43 and 67% lower in the IGT individuals, the index of whole-body IS was increased in the IGT individuals (4.36 +/- 1.71 vs 3.61 +/- 1.28 mg(-1).muU(-1) 100.ml(2); p < 0.05). By the hyperglycemic clamp technique first- (82 &PLUSMN; 26 vs 215 &PLUSMN; 88 μU/ml; p < 0.001) and second- (36 +/- 19 vs 73 +/- 44 muU/ml; p < 0.05) phases of insulin secretion was decreased in the IGT individuals, especially the first one. However, the groups did not differ in relation to the IS: IGT = 13.52 &PLUSMN; 7.27 and NGT = 9.96 &PLUSMN; 6.70 mg.ml/kg.μU.min(-1); p > 0.05. Functional relationship of IS (y) on first-phase insulin release (x) showed a smaller (p < 0,05) regression coefficient for the IGT group.Conclusion: Brazilians with IGT well-matched with NGT ones were characterized by impaired first- and second-phase insulin secretion (mainly the former), while defects in IS were not evident.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)