996 resultados para Age, standard deviation
Resumo:
At convergent margins, fluids rise through the forearc in response to consolidation of the upper plate and dewatering of the subducting plate, and produce various cold-seep-related features on the seafloor (mud diapirs, mud mounds). At the Central American forearc, authigenic carbonates precipitated from rising fluids within such structures during active venting while typical mixed-mud sediments were ejected onto the surrounding seafloor where they became intercalated with normal pelagic background sediments, indicating that mud mounds evolved unsteadily through alternating active and inactive phases. Intercalated regional ash layers from Plinian eruptions at the Central American volcanic arc provide time marks that constrain the ages of mud ejection activity. U/Th dating of drill core samples of authigenic carbonate caps of mud mounds yields ages agreeing well with those constrained by ash layers and showing that carbonate caps grow inward rather than outward during active venting. Both dating approaches show that offshore Nicaragua and Costa Rica (1) active and inactive phases can occur simultaneously at neighboring mounds, (2) mounds along the forearc have individual histories of activity, but there are distinct time intervals when nearly all mounds have been active or inactive, (3) lifetimes of mounds reach several hundred thousand years, and (4) highly active periods last 10-50 k.y. with intervening periods of >10 k.y. of relative quiescence.
Resumo:
The North Atlantic Ocean underwent an abrupt temperature increase of 9 °C at high latitudes within a couple of decades during the transition from Heinrich event 1 (H1) to the Bølling warm event, but the mechanism responsible for this warming remains uncertain. Here we address this issue, presenting high-resolution last deglaciation planktic and benthic foraminiferal records of temperature and oxygen isotopic composition of seawater (d18OSW) for the subtropical South Atlantic. We identify a warming of ~6.5 °C and an increase in d18Osw of 1.2 per mil at the permanent thermocline during the transition, and a simultaneous warming of ~3.5 °C with no significant change in d18Osw at intermediate depths. Most of the warming can be explained by tilting the South Atlantic east-west isopycnals from a flattened toward a steepened position associated with a collapsed (H1) and strong (Bølling) Atlantic meridional overturning circulation (AMOC). However, this zonal seesaw explains an increase of just 0.3 per mil in permanent thermocline d18Osw. Considering that d18Osw at the South Atlantic permanent thermocline is strongly influenced by the inflow of salty Indian Ocean upper waters, we suggest that a strengthening in the Agulhas leakage took place at the transition from H1 to the Bølling, and was responsible for the change in d18Osw recorded in our site. Our records high-light the important role played by Indian-Atlantic interocean exchange as the trigger for the resumption of the AMOC and the Bølling warm event. of the AMOC and the Bølling warm event.
Resumo:
Abstract of Bazin et al. (2013): An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this framework, new measurements of d18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete d18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from d18Oatm, dO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one. Abstract of Veres et al. (2013): The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120-800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on d15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.
Resumo:
The neodymium isotopic composition of marine precipitates is increasingly recognized as a powerful tool for identifying changes in ocean circulation and mixing on million year to millennial timescales. Unlike nutrient proxies such as ?13C or Cd/Ca, Nd isotopes are not thought to be altered in any significant way by biological processes, and thus they can serve as a quasi-conservative water mass tracer. However, the application of Nd isotopes in understanding the role of thermohaline circulation in rapid climate change is currently hindered by the lack of direct constraints on the signature of the North Atlantic end-member through time. Here we present the first results of Nd isotopes measured in U-Th-dated deep-sea corals from the New England seamounts in the northwest Atlantic Ocean. Our data are consistent with the conclusion that the Nd isotopic composition of North Atlantic deep and intermediate water has remained nearly constant through the last glacial cycle. The results address long-standing concerns that there may have been significant changes in the Nd isotopic composition of the North Atlantic end-member during this interval and substantiate the applicability of this novel tracer on millennial timescales for paleoceanography research.
Resumo:
The high levels of polychlorinated biphenyls (PCBs) and DDT in gray seal (Halichoerus grypus) and ringed seal (Phoca hispida botnica) in the Baltic Sea have been associated with pathological disruptions, including bone lesions and reproductive failures. The underlying environmental and toxicological mechanisms leading to these pathological changes are not yet fully understood. The present study investigated the relationship between the individual contaminant load and bone- and thyroid-related effects in adult gray seals (n = 30) and ringed seals (n = 46) in the highly contaminated Baltic Sea and in reference areas (Sable Island, Canada, and Svalbard, Norway). In the gray seals, multivariate and correlation analyses revealed a clear relationship between circulating 1,25-dihydroxyvitamin D3 (1,25(OH)2D), calcium, phosphate, and thyroid hormone (TH) levels and hepatic PCB and DDT load, which suggests contaminant-mediated disruption of the bone and thyroid homeostasis. Contaminants may depress 1,25(OH)2D levels or lead to hyperthyroidism, which may cause bone resorption. In the ringed seals, associations between circulating 1,25(OH)2D, THs, and hepatic contaminants were less prominent. These results suggest that bone lesions observed in the Baltic gray seals may be associated with contaminant-mediated vitamin D and thyroid disruption.
Resumo:
The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.
Resumo:
This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.
Resumo:
Polychlorinated biphenyls (PCBs) may induce activity of hepatic enzymes, mainly Phase I monooxygenases and conjugating Phase II enzymes, that catalyze the metabolism of PCBs leading to formation of metabolites and to potential adverse health effects. The present study investigates the concentration and pattern of PCBs, the induction of hepatic phase I and II enzymes, and the formation of hydroxy (OH) and methylsulfonyl (CH3SO2=MeSO2) PCB metabolites in two ringed seal (Phoca hispida) populations, which are contrasted by the degree of contamination exposure, that is, highly contaminated Baltic Sea (n = 31) and less contaminated Svalbard (n = 21). Phase I enzymes were measured as ethoxyresorufin-O-deethylation (EROD), benzyloxyresorufin-O-dealkylation (BROD), methoxyresorufin-O-demethylation (MROD), and pentoxyresorufin-O-dealkylation (PROD) activities, and phase II enzymes were measured as uridine diphosphophate glucuronosyl transferase (UDPGT) and glutathione-S-transferase (GST). Geographical comparison, multivariate, and correlation analysis indicated that sum-PCB had a positive impact on Phase I enzyme and GST activities leading to biotransformation of group III (vicinal ortho-meta-H atoms and <=1 ortho-chlorine (Cl)) and IV PCBs (vicinal meta-para-H atoms and <=2 ortho-Cl). The potential precursors for the main OH-PCBs detected in plasma in the Baltic seals were group III PCBs. MeSO2-PCBs detected in liver were mainly products of group IV PCB metabolism. Both CYP1A- and CYP2B-like enzymes are suggested to be involved in the PCB biotransformation in ringed seals.
Resumo:
To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.
Resumo:
A controversy currently exists regarding the number of Toba eruptive events represented in the tephra occurrences across peninsular India. Some claim the presence of a single bed, the 75,000-yr-old Toba tephra; others argue that dating and archaeological evidence suggest the presence of earlier Toba tephra. Resolution of this issue was sought through detailed geochemical analyses of a comprehensive suite of samples, allowing comparison of the Indian samples to those from the Toba caldera in northern Sumatra, Malaysia, and, importantly, the sedimentary core at ODP Site 758 in the Indian Ocean - a core that contains several of the earlier Toba tephra beds. In addition, two samples of Toba tephra from western India were dated by the fission-track method. The results unequivocally demonstrate that all the presently known Toba tephra occurrences in peninsular India belong to the 75,000 yr B.P. Toba eruption. Hence, this tephra bed can be used as an effective tool in the correlation and dating of late Quaternary sedimentary sequences across India and it can no longer be used in support of a middle Pleistocene age for associated Acheulian artifacts.