977 resultados para Aerobic oxidation
Resumo:
In many countries, governments and health agencies are strongly promoting physical activity as a means to prevent the accumulation of fatness that leads to weight gain and obesity. However, there is often a resistance to respond to health promotion initiatives. For example, in the UK, the Chief Medical Officer has recently reported that 71% of women and 61% of men fail to carry out even the minimal amount of physical activity recommended in the government’s guidelines. Similarly, the Food safety Agency has promoted reductions in the intake of fat, sugar and salt but with very little impact on the pattern of consumption. Why is it that recommendations to improve health are so difficult to implement, and produce the desired outcome?
Resumo:
The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.
Resumo:
Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.
Resumo:
The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.
Resumo:
The effect of oxidation and reduction conditions upon the morphology of polycrystalline silver catalysts has been investigated by means of in situ Fourier-transform infrared (FTIR) spectroscopy. Characterization of the sample was achieved by inspection of the νas(COO) band profile of adsorbed formate, recorded after dosing with formic acid at ambient temperature. Evidence was obtained for the existence of a silver surface reconstructed by the presence of subsurface oxygen in addition to the conventional family of Ag(111) and Ag(110) crystal faces. Oxidation at 773 K facilitated the reconstruction of silver planes due to the formation of subsurface oxygen species. Prolonged oxygen treatment at 773 K also caused particle fragmentation as a consequence of excessive oxygen penetration of the silver catalyst at defect sites. It was also deduced that the presence of oxygen in the gas phase stabilized the growth of silver planes which could form stronger bonds with oxygen. In contrast, high-temperature thermal treatment in vacuum induced significant sintering of the silver catalyst. Reduction at 773 K resulted in substantial quantities of dissolved hydrogen (and probably hydroxy species) in the bulk silver structure. Furthermore, enhanced defect formation in the catalyst was also noted, as evidenced by the increased concentration of formate species associated with oxygen-reconstructed silver faces.
Individual variability in compensatory eating following acute exercise in overweight and obese women
Resumo:
Background While compensatory eating following acute aerobic exercise is highly variable, little is known about the underling mechanisms that contribute to alterations in exercise-induced eating behaviour. Methods Overweight and obese women (BMI = 29.6 ± 4.0kg.m2) performed a bout of cycling individually tailored to expend 400kcal (EX), or a time-matched no exercise control condition in a randomised, counter-balanced order. Sixty minutes after the cessation of exercise, an ad libitum test meal was provided. Substrate oxidation and subjective appetite ratings were measured during exercise/time-matched rest, and during the period between the cessation of exercise and food consumption. Results While ad libitum EI did not differ between EX and the control condition (666.0 ± 203.9kcal vs. 664.6 ± 174.4kcal, respectively; ns), there was marked individual variability in compensatory energy intake (EI). The difference in EI between EX and the control condition ranged from -234.3 to +278.5kcal. Carbohydrate oxidation during exercise was positively associated with post-exercise EI, accounting for 37% of the variance in EI (r = 0.57; p = 0.02). Conclusions These data indicate that capacity of acute exercise to create a short-term energy deficit in overweight and obese women is highly variable. Furthermore, exercise-induced CHO oxidation can explain part of the variability in acute exercise-induced compensatory eating. Post-exercise compensatory eating could serve as an adaptive response to facilitate the restoration of carbohydrate balance.
Resumo:
Purpose: Hyperactive platelets contribute to the thrombotic response in humans, and exercise transiently increases platelet function. Caffeine is routinely used by athletes as an ergogenic aid, but the combined effect of exercise and caffeine on platelet function has not been investigated. Methods: Twelve healthy males were randomly assigned to one of four groups and undertook four experimental trials of a high-intensity aerobic interval training (AIT) bout or rest with ingestion of caffeine (3 mg·kg-1) or placebo. AIT was 8 × 5 min at approximately 75% peak power output (approximately 80% V?O2peak) and 1-min recovery (approximately 40% peak power output, approximately 50% V?O2peak) intervals. Blood/urine was collected before, 60, and 90 min after capsule ingestion and analyzed for platelet aggregation/activation. Results: AIT increased platelet reactivity to adenosine diphosphate (placebo 30.3%, caffeine 13.4%, P < 0.05) and collagen (placebo 10.8%, caffeine 5.1%, P < 0.05) compared with rest. Exercise placebo increased adenosine diphosphate-induced aggregation 90 min postingestion compared with baseline (40.5%, P < 0.05), but the increase when exercise was combined with caffeine was small (6.6%). During the resting caffeine protocol, collagen-induced aggregation was reduced (-4.3%, P < 0.05). AIT increased expression of platelet activation marker PAC-1 with exercise placebo (P < 0.05) but not when combined with caffeine. Conclusion: A single bout of AIT increases platelet function, but caffeine ingestion (3 mg·kg) does not exacerbate platelet function at rest or in response to AIT. Our results provide new information showing caffeine at a dose that can elicit ergogenic effects on performance has no detrimental effect on platelet function and may have the potential to attenuate increases in platelet activation and aggregation when undertaking strenuous exercise.
Resumo:
PURPOSE: We used gene microarray analysis to compare the global expression profile of genes involved in adaptation to training in skeletal muscle from chronically strength-trained (ST), endurance-trained (ET), and untrained control subjects (Con). METHODS: Resting skeletal muscle samples were obtained from the vastus lateralis of 20 subjects (Con n = 7, ET n = 7, ST n = 6; trained [TR] groups >8 yr specific training). Total RNA was extracted from tissue for two color microarray analysis and quantative (Q)-PCR. Trained subjects were characterized by performance measures of peak oxygen uptake V?O 2peak) on a cycle ergometer and maximal concentric and eccentric leg strength on an isokinetic dynamometer. RESULTS: Two hundred and sixty-three genes were differentially expressed in trained subjects (ET + ST) compared with Con (P < 0.05), whereas 21 genes were different between ST and ET (P < 0.05). These results were validated by reverse transcriptase polymerase chain reaction for six differentially regulated genes (EIFSJ, LDHB, LMO4, MDH1, SLC16A7, and UTRN. Manual cluster analyses revealed significant regulation of genes involved in muscle structure and development in TR subjects compared with Con (P < 0.05) and expression correlated with measures of performance (P < 0.05). ET had increased whereas ST had decreased expression of gene clusters related to mitochondrial/oxidative capacity (P ?‰Currency sign 0.05). These mitochondrial gene clusters correlated with V?O2peak (P < 0.05). V?O2peak also correlated with expression of gene clusters that regulate fat and carbohydrate oxidation (P < 0.05). CONCLUSION: We demonstrate that chronic training subtly coregulates numerous genes from important functional groups that may be part of the long-term adaptive process to adapt to repeated training stimuli.
Resumo:
Purpose The objectives of this study were to examine the effect of 4-week moderate- and high-intensity interval training (MIIT and HIIT) on fat oxidation and the responses of blood lactate (BLa) and rating of perceived exertion (RPE). Methods Ten overweight/obese men (age = 29 ±3.7 years, BMI = 30.7 ±3.4 kg/m2) participated in a cross-over study of 4-week MIIT and HIIT training. The MIIT training sessions consisted of 5-min cycling stages at mechanical workloads 20% above and 20% below 45%VO2peak. The HIIT sessions consisted of intervals of 30-s work at 90%VO2peak and 30-s rest. Pre- and post-training assessments included VO2max using a graded exercise test (GXT) and fat oxidation using a 45-min constant-load test at 45%VO2max. BLa and RPE were also measured during the constant-load exercise test. Results There were no significant changes in body composition with either intervention. There were significant increases in fat oxidation after MIIT and HIIT (p ≤ 0.01), with no effect of intensity. BLa during the constant-load exercise test significantly decreased after MIIT and HIIT (p ≤ 0.01), and the difference between MIIT and HIIT was not significant (p = 0.09). RPE significantly decreased after HIIT greater than MIIT (p ≤ 0.05). Conclusion Interval training can increase fat oxidation with no effect of exercise intensity, but BLa and RPE decreased after HIIT to greater extent than MIIT.
Resumo:
The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.
Resumo:
An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 µM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s−1. Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e− rather than 1e– electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 µM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.
Superactivation of metal electrode surfaces and its relevance to COads oxidation at fuel cell anodes
Resumo:
The inhibiting effect of COads on platinum-based anodes is a major problem in the development of ambient temperature, polyelectrolyte membrane-type fuel cells. One of the unusual features of the response for the oxidative removal of the species in question is that the response observed for this reaction in the positive sweep is highly dependent on the CO admission potential, for example, when the COads is formed in the Hads region it undergoes oxidation at unusually low potentials. Such behaviour is attributed here to hydrogen activation of the platinum surface, with the result that oxide mediators (and COads oxidation) occurs at an earlier stage of the positive sweep. It is also demonstrated, for both platinum and gold in acid solution, that dramatic premonolayer oxidation responses may be observed following suitable preactivation of the electrode surfaces. It is suggested that the defect state of a solid electrode surface is an important variable whose investigation may yield improved fuel cell anode performance.
Resumo:
The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.
Resumo:
Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...
Resumo:
The formation of highly anisotropic AuPt alloys has been achieved via a simple electrochemical approach without the need for organic surfactants to direct the growth process. The surface and bulk properties of these materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and electrochemically by cyclic voltammetry to confirm alloy formation. It was found that AuPt materials are highly active for both the model hydrogen evolution reaction and the fuel cell relevant formic acid oxidation reaction. In particular for the latter case the preferred dehydrogenation pathway was observed at AuPt compared to nanostructured Pt prepared under identical electrochemical conditions which demonstrated the less preferred dehydration pathway. The enhanced performance is attributed to both the ensemble effect which facilitates CO(ads) removal from the surface as well as the highly anisotropic nanostructure of AuPt.