993 resultados para Advanced fibrosis
Resumo:
Advanced glycation endproducts (AGEs) have been implicated in the pathogenesis of cancer, inflammatory conditions and diabetic complications. An interaction of AGEs with their receptor (RAGE) results in increased release of pro-inflammatory cytokines and reactive oxygen species (ROS), causing damage to susceptible tissues. Laminitis, a debilitating foot condition of horses, occurs in association with endocrine dysfunction and the potential involvement of AGE and RAGE in the pathogenesis of the disease has not been previously investigated. Glucose transport in lamellar tissue is thought to be largely insulin-independent (GLUT-1), which may make the lamellae susceptible to protein glycosylation and oxidative stress during periods of increased glucose metabolism. Archived lamellar tissue from horses with insulin-induced laminitis (n=4), normal control horses (n=4) and horses in the developmental stages (6 h, 12 h and 24 h) of the disease (n=12) was assessed for AGE accumulation and the presence of oxidative protein damage and cellular lipid peroxidation. The equine-specific RAGE gene was identified in lamellar tissue, sequenced and is now available on GenBank. Lamellar glucose transporter (GLUT-1 and GLUT-4) gene expression was assessed quantitatively with qRT-PCR in laminitic and control horses and horses in the mid-developmental time-point (24 h) of the disease. Significant AGE accumulation had occurred by the onset of insulin-induced laminitis (48 h) but not at earlier time-points, or in control horses. Evidence of oxidative stress was not found in any group. The equine-specific RAGE gene was not expressed differently in treated and control animals, nor was the insulin-dependent glucose transporter GLUT-4. However, the glucose transporter GLUT-1 was increased in lamellar tissue in the developmental stages of insulin-induced laminitis compared to control horses and the insulin-independent nature of the lamellae may facilitate AGE formation. However, due to the lack of AGE accumulation during disease development and a failure to detect an increase in ROS or upregulation of RAGE, it appears unlikely that oxidative stress and protein glycosylation play a central role in the pathogenesis of acute, insulin-induced laminitis.
Resumo:
Scope: We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Methods and results: Three groups of Sprague-Dawley rats (n = 16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n = 4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-beta expression, apoptosis, and tissue levels of arachidonic acid, MIP-1 alpha, IL-1 beta, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Conclusions: Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury.
Resumo:
An approach for modeling passenger flows in airport terminals by a set of devised advanced traits of passengers is proposed. Advanced traits take into account a passenger’s cognitive preferences which would be the underlying motivations of route-choice decisions. Basic traits are the status of passengers such as travel class. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, we advise that real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making by individual personals. Inside airport terminals, passengers are goal-directed and not only use standard processing check points but also behave discretionary activities during the course. In this paper, we integrated discretionary activities in the study to fulfill full-range of passenger flows. In the model passengers are built as intelligent agents who possess a bunch of initial basic traits and then can be categorized into ten distinguish groups in terms of route-choice preferences by inferring the results of advanced traits. An experiment is executed to demonstrate the capability to facilitate predicting passenger flows.
Resumo:
Research interest in pedestrian behaviour spans the retail industry, emergency services, urban planners and other agencies. Most models to simulate and model pedestrian movement can be distinguished on the basis of geographical scale, from the micro-scale movement of obstacle avoidance, through the meso-scale of individuals planning multi-stop shopping trips, up to the macro-scale of overall flow of masses of people between places. In this paper, route-choice decision-making model is devised for modelling passengers flow in airport terminal. A set of devised advanced traits of passengers is firstly proposed. Advanced traits take into account a passenger’s cognitive preferences and demonstrate underlying motivations of route-choice decisions. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making. Passengers in the model are as intelligent agents who possess a bunch of initial basic traits and are categorized into five distinguish groups in terms of routing preferences. Route choices are consecutively determined by inferring current advanced traits according to the utility matrix.
Resumo:
Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.
Resumo:
The global road safety problem The role of human factors in road crashes The use of driving simulators in road safety research The CARRS-Q advanced driving simulator –Functionality –Problems encountered and related solutions Past and current projects using the driving simulator Limitations of driving simulators
Resumo:
This paper reports outcomes of a pilot study to develop a conceptual framework to allow people to retrofit a building-layer to gain better control of their own built- environments. The study was initiated by the realisation that discussions surrounding the improvement of building performances tend to be about top-down technological solutions rather than to help and encourage bottom-up involvement of building-users. While users are the ultimate beneficiaries and their feedback is always appreciated, their direct involvements in managing buildings would often be regarded as obstruction or distraction. This is largely because casual interventions by uninformed building-users tend to disrupt the system. Some earlier researches showed however that direct and active participation of users could improve the building performance if appropriate training and/or systems were introduced. We also speculate this in long run would also make the built environment more sustainable. With this in mind, we looked for opportunities to retrofit our own office with an interactive layer to study how we could introduce ad-hoc systems for building-users. The aim of this paper is to describe our vision and initial attempts followed by discussion.
Resumo:
Compared the different patterns of stress reported by mothers of children (aged 5–12 yrs) with either a chronic physical illness (cystic fibrosis) or a chronic psychological disorder (autism), and children without a physical or psychological disorder. 24 mothers from each of these 3 groups completed a short form of the Questionnaire on Resources and Stress. Each clinical group exhibited different patterns of stressful response consistent with the nature of the disorder and the requirements of care imposed on the families. Autism contributed significantly more to family stress than did cystic fibrosis. The number of children in the family was not a significant variable. Implications for the development of family intervention programs are discussed
Resumo:
AIMS: To test a model that delineates advanced practice nursing from the practice profile of other nursing roles and titles. BACKGROUND: There is extensive literature on advanced practice reporting the importance of this level of nursing to contemporary health service and patient outcomes. Literature also reports confusion and ambiguity associated with advanced practice nursing. Several countries have regulation and delineation for the nurse practitioner, but there is less clarity in definition and service focus of other advanced practice nursing roles. DESIGN: A statewide survey. METHODS: Using the modified Strong Model of Advanced Practice Role Delineation tool, a survey was conducted in 2009 with a random sample of registered nurses/midwives from government facilities in Queensland, Australia. Analysis of variance compared total and subscale scores across groups according to grade. Linear, stepwise multiple regression analysis examined factors influencing advanced practice nursing activities across all domains. RESULTS: There were important differences according to grade in mean scores for total activities in all domains of advanced practice nursing. Nurses working in advanced practice roles (excluding nurse practitioners) performed more activities across most advanced practice domains. Regression analysis indicated that working in clinical advanced practice nursing roles with higher levels of education were strong predictors of advanced practice activities overall. CONCLUSION: Essential and appropriate use of advanced practice nurses requires clarity in defining roles and practice levels. This research delineated nursing work according to grade and level of practice, further validating the tool for the Queensland context and providing operational information for assigning innovative nursing service.
Resumo:
The advanced programmatic risk analysis and management model (APRAM) is one of the recently developed methods that can be used for risk analysis and management purposes considering schedule, cost, and quality risks simultaneously. However, this model considers those failure risks that occur only over the design and construction phases of a project’s life cycle. While it can be sufficient for some projects for which the required cost during the operating life is much less than the budget required over the construction period, it should be modified in relation to infrastructure projects because the associated costs during the operating life cycle are significant. In this paper, a modified APRAM is proposed, which can consider potential risks that might occur over the entire life cycle of the project, including technical and managerial failure risks. Therefore, the modified model can be used as an efficient decision-support tool for construction managers in the housing industry in which various alternatives might be technically available. The modified method is demonstrated by using a real building project, and this demonstration shows that it can be employed efficiently by construction managers. The Delphi method was applied in order to figure out the failure events and their associated probabilities. The results show that although the initial cost of a cold-formed steel structural system is higher than a conventional construction system, the former’s failure cost is much lower than the latter’s
Resumo:
A new control method for battery storage to maintain acceptable voltage profile in autonomous microgrids is proposed in this article. The proposed battery control ensures that the bus voltages in the microgrid are maintained during disturbances such as load change, loss of micro-sources, or distributed generations hitting power limit. Unlike the conventional storage control based on local measurements, the proposed method is based on an advanced control technique, where the reference power is determined based on the voltage drop profile at the battery bus. An artificial neural network based controller is used to determine the reference power needed for the battery to hold the microgrid voltage within regulation limits. The pattern of drop in the local bus voltage during power imbalance is used to train the controller off-line. During normal operation, the battery floats with the local bus voltage without any power injection. The battery is charged or discharged during the transients with a high gain feedback loop. Depending on the rate of voltage fall, it is switched to power control mode to inject the reference power determined by the proposed controller. After a defined time period, the battery power injection is reduced to zero using slow reverse-droop characteristics, ensuring a slow rate of increase in power demand from the other distributed generations. The proposed control method is simulated for various operating conditions in a microgrid with both inertial and converter interfaced sources. The proposed battery control provides a quick load pick up and smooth load sharing with the other micro-sources in a disturbance. With various disturbances, maximum voltage drop over 8% with conventional energy storage is reduced within 2.5% with the proposed control method.
Resumo:
Aim his study reports the use of exploratory factor analysis to determine construct validity of a modified advanced practice role delineation tool. Background Little research exists on specific activities and domains of practice within advanced practice nursing roles, making it difficult to define service parameters of this level of nursing practice. A valid and reliable tool would assist those responsible for employing or deploying advanced practice nurses by identifying and defining their service profile. This is the third paper from a multi-phase Australian study aimed at assigning advanced practice roles. Methods A postal survey was conducted of a random sample of state government employed Registered nurses and midwives, across various levels and grades of practice in the state of Queensland, Australia, using the modified Advanced Practice Role Delineation tool. Exploratory factor analysis, using principal axis factoring was undertaken to examine factors in the modified tool. Cronbach’s alpha coefficient determined reliability of the overall scale and identified factors. Results There were 658 responses (42% response rate). The five factors found with loadings of ≥.400 for 40 of the 41 APN activities were similar to the five domains in the Strong model. Cronbach’s alpha coefficient was .94 overall and for the factors ranged from 0.83 to 0.95. Conclusion Exploratory factor analysis of the modified tool supports validity of the five domains of the original tool. Further investigation will identify use of the tool in a broader healthcare environment.
Resumo:
This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.