202 resultados para Adrenoceptor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of several drug combinations (atropine, xylazine, romifidine, methotrimeprazine, midazolam, or fentanyl) with ketamine for short term anesthesia in cats. Twelve cats were anesthetized 6 times by using a cross-over Latin square protocol: methotrimeprazine was combined with midazolam, ketamine, and fentanyi; midazolam and ketamine; romifidine and ketamine; and xylazine and ketamine. Atropine was combined with romifidine and ketamine, and xylazine and ketamine. Temperature, heart rate, and respiratory rate decreased in all groups. Apnea occurred in 1 cat treated with methotrimeprazine, romifidine, and ketamine, suggesting that ventilatory support may be necessary when this protocol is used. Emesis occurred in some cats treated with alpha(2)-adrenoceptor agonists, and this side effect should be considered when these drugs are used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the participation of central alpha(2)-adrenoceptors and imidazoline receptors in the inhibition of water deprivation-induced water intake in rats. The alpha(2)-adrenoceptor and imidazoline antagonist idazoxan (320 nmol), but not the alpha(2)-adrenoceptor antagonist yohimbine, abolished the antidipsogenic effect of moxonidine (alpha(2)-adrenoceptor and imidazoline agonist, 20 nmol) microinjected into the medial septal area. Yohimbine abolished the antidipsogenic effect of moxonidine intracerebroventricularly. Therefore, central moxonidine may inhibit water intake acting independently on both imidazoline receptors and alpha(2)-adrenoceptors at different forebrain sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 Nitric oxide (NO) and alpha(2)-adrenoceptor and imidazoline agonists such as moxonidine may act centrally to inhibit sympathetic activity and decrease arterial pressure.2 In the present study, we investigated the effects of pretreatment with L-NAME ( NO synthesis inhibitor), injected into the 4th ventricle (4th V) or intravenously (i.v.), on the hypotension, bradycardia and vasodilatation induced by moxonidine injected into the 4th V in normotensive rats.3 Male Wistar rats with a stainless steel cannula implanted into the 4th V and anaesthetized with urethane were used. Blood flows were recorded by use of miniature pulsed Doppler flow probes implanted around the renal, superior mesenteric and low abdominal aorta.4 Moxonidine (20 nmol), injected into the 4th V, reduced the mean arterial pressure (-42+/-3 mmHg), heart rate (-22+/-7 bpm) and renal (-62+/-15%), mesenteric (-41+/-8%) and hindquarter (-50+/-8%) vascular resistances.5 Pretreatment with L-NAME (10 nmol into the 4th V) almost abolished central moxonidine-induced hypotension (-10+/-3 mmHg) and renal (-10+/-4%), mesenteric (-11+/-4%) and hindquarter (-13+/-6%) vascular resistance reduction, but did not affect the bradycardia (-18+/-8 bpm).6 the results indicate that central NO mechanisms are involved in the vasodilatation and hypotension, but not in the bradycardia, induced by central moxonidine in normotensive rats. British Journal of Pharmacology (2004).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Central cholinergic activation by pilocarpine induces salivation dependent on the integrity of forebrain areas. The present work investigates the autonomic mediation of this salivation. Pilocarpine (500 nmol/rat) was injected into the lateral ventricle (LV) of tribromoethanol-anesthetized adult male rats. Preweighed cotton balls were inserted into the oral cavity and weighed again 7 min later. ol-adrenoceptor antagonists (3-50 mu mol/kg) prazosin (alpha(1)), yohimbine (alpha(2)) or propranolol (beta) injected intraperitoneally (i.p.) produced, 80%, 20% and 0% inhibition respectively of the LV pilocarpine-induced salivation. Intracerebroventricular injections (160 nmol) of the antagonists did not alter the effects of pilocarpine injected into the LV. Bilateral section of chorda tympani nerve or bilateral sympathetic cervical ganglionectomy produced 0% and 40% inhibition of pilocarpine-induced salivation, respectively. Ganglionectomy did not alter salivation induced by i.p, injection of pilocarpine (4 mu mol/kg). The results indicate that there is a large sympathetic contribution to the salivation induced by central cholinergic activation. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium channels mediate the actions of many drugs. The present work investigated whether diltiazem, an L-type calcium channel blocker, alters the inhibition of sodium appetite induced by noradrenaline and the alpha(2)-adrenoceptor agonist clonidine. Adult male Holtzman rats (N=4-8) with cannula implanted into the third cerebral ventricle were submitted to sodium depletion {furosemide sc+24-h removal of ambiente sodium). Sodium depleted control animals that received 0.9% NaCl as vehicle injected intracerebroventricularly (i.c.v) ingested 13.0+/-1.5 ml/120 min of 1.8% NaCl. Intracerebroventricular injection of either noradrenaline (80 nmol) or clonidine (20 nmol) inhibited 1.8% NaCl intake from 70 to 90%. Prior i.c.v. injection of diltiazem (6-48 nmol) inhibited from 50 to 100% the effect of noradrenaline and clonidine in a dose-response manner. Diltiazem alone at 100 nmol inhibited, but at 50 nmol had no effect on, sodium appetite. The results suggest: (1) common ionic mechanisms involving calcium channels for the inhibition that noradrenaline and clonidine exert on sodium appetite and (2) a dual role for the benzothiazepine site of L-type calcium channels in the control of sodium appetite. (C) 2002 Elsevier B.V. B V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we compared the effects produced by moxonidine (alpha(2)-adrenoceptor/imidazoline agonist) injected into the 4th cerebral ventricle and into the lateral cerebral ventricle on mean arterial pressure, heart rate and on renal, mesenteric and hindquarter vascular resistances, as well as the possible action of moxonidine on central alpha(1)- or alpha(2)-adrenoceptors to produce cardiovascular responses. Male Holtzman rats (n = 7-8) anesthetized with urethane (0.5 g/kg, intravenously - i.v.) and alpha-chloralose (60 mg/kg, i.v.) were used. Moxonidine (5, 10 and 20 nmol) injected into the 4th ventricle reduced arterial pressure (-19 +/- 5, -30 +/- 7 and -43 +/- 8 mmHg vs. vehicle: 2 +/- 4 mmHg), heart rate (-10 +/- 6, - 16 +/- 7 and -27 +/- 9 beats per minute - bpm, vs. vehicle: 4 +/- 5 bpm), and renal, mesenteric and hindquarter vascular resistances. Moxonidine (5, 10 and 20 nmol) into the lateral ventricle only reduced renal vascular resistance (-77 +/- 17%, - 85 +/- 13%, -89 +/- 10% vs. vehicle: 3 +/- 4%), without changes on arterial pressure, heart rate and mesenteric and hindquarter vascular resistances. Pre-treatment with the selective alpha(2)-adrenoceptor antagonist yohimbine (80, 160 and 320 nmol) injected into the 4th ventricle attenuated the hypotension (-32 +/- 5, -25 +/- 4 and -12 +/- 6 mmHg), bradycardia (-26 +/- 11, -23 +/- 5 and -11 +/- 6 bpm) and the reduction in renal, mesenteric and hindquarter vascular resistances produced by moxonidine (20 nmol) into the 4th ventricle. Pretreatment with yohimbine (320 nmol) into the lateral ventricle did not change the renal vasodilation produced by moxonidine (20 nmol) into the lateral ventricle. The alpha(1)-adrenoceptor antagonist prazosin (320 nmol) injected into the 4th ventricle did not affect the cardiovascular effects of moxonidine. However, prazosin (80, 160 and 320 nmol) into the lateral ventricle abolished the renal vasodilation (-17 +/- 4, -6 +/- 9 and 2 +/- 11%) produced by moxonidine. The results indicate that the decrease in renal vascular resistance due to moxonidine action in the forebrain is mediated by alpha(1)-adrenoceptors, while the cardiovascular effects produced by moxonidine acting in the brainstern depend at least partially on the activation of coadrenoceptors. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Losartan, an AT1 angiotensin II (ANG II) receptor non-peptide antagonist, induces an increase in mean arterial pressure (MAP) when injected intracerebroventricularly (icv) into rats. The present study investigated possible effector mechanisms of the increase in MAP induced by icv losartan in unanesthetized rats. Male Holtzman rats (280-300 g, N = 6/group) with a cannula implanted into the anterior ventral third ventricle received an icv injection of losartan (90 µg/2 µl) that induced a typical peak pressor response within 5 min. In one group of animals, this response to icv losartan was completely reduced from 18 ± 1 to 4 ± 2 mmHg by intravenous (iv) injection of losartan (2.5-10 mg/kg), and in another group, it was partially reduced from 18 ± 3 to 11 ± 2 mmHg by iv prazosin (0.1-1.0 mg/kg), an alpha1-adrenergic antagonist (P<0.05). Captopril (10 mg/kg), a converting enzyme inhibitor, injected iv in a third group inhibited the pressor response to icv losartan from 24 ± 3 to 7 ± 2 mmHg (P<0.05). Propranolol (10 mg/kg), a ß-adrenoceptor antagonist, injected iv in a fourth group did not alter the pressor response to icv losartan. Plasma renin activity and serum angiotensin-converting enzyme activity were not altered by icv losartan in other animals. The results suggest that the pressor effect of icv losartan depends on angiotensinergic and alpha1-adrenoceptor activation, but not on increased circulating ANG II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)