980 resultados para Adrenergic beta-Antagonists


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Catecholamines regulate several physiological processes in mollusks. Many pharmacological experiments have been conducted to determine the effects of adrenergic agonist and antagonist of catecholamine receptors on Meretrix meretrix metamorphosis. Results showed that adrenaline (AD) and noradrenaline (NA) had substantial effects (p < 0.05) on larval metamorphosis at concentrations ranging from 10 mu M to 100 mu M. 10 mu M beta-adrenergic receptor (AR) agonist isoproterenol showed the same inducement effect as that of NA and AD on metamorphosis, whereas the alpha-AR agonist phenylephrine had no significant effect at concentrations between 0.1 mu M and 100 mu M concentrations (p > 0.05). Furthermore, I mu M beta-AR antagonist propanolol, but not alpha-AR antagonist prazosin, depressed the larval metamorphosis induced by NA or AD. By immunocytochemistry, two cell bodies of beta-adrenergic-like receptor, C/A1, C/A2, were observed in the cerebral/apical ganglion of competent larvae. In addition, there were other immunoreactive dots near C/A1 and C/A2. The results of pharmacology and immunocytochemistry suggests that beta-adrenergic-like receptor located in the larval CNS, might play a considerable role in the larval metamorphosis of M meretrix by AD or NA. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Genetic manipulation to reverse molecular abnormalities associated with dysfunctional myocardium may provide novel treatment. This study aimed to determine the feasibility and functional consequences of in vivo beta-adrenergic receptor kinase (betaARK1) inhibition in a model of chronic left ventricular (LV) dysfunction after myocardial infarction (MI). METHODS AND RESULTS: Rabbits underwent ligation of the left circumflex (LCx) marginal artery and implantation of sonomicrometric crystals. Baseline cardiac physiology was studied 3 weeks after MI; 5x10(11) viral particles of adenovirus was percutaneously delivered through the LCx. Animals received transgenes encoding a peptide inhibitor of betaARK1 (Adeno-betaARKct) or an empty virus (EV) as control. One week after gene delivery, global LV and regional systolic function were measured again to assess gene treatment. Adeno-betaARKct delivery to the failing heart through the LCx resulted in chamber-specific expression of the betaARKct. Baseline in vivo LV systolic performance was improved in Adeno-betaARKct-treated animals compared with their individual pre-gene delivery values and compared with EV-treated rabbits. Total beta-AR density and betaARK1 levels were unchanged between treatment groups; however, beta-AR-stimulated adenylyl cyclase activity in the LV was significantly higher in Adeno-betaARKct-treated rabbits compared with EV-treated animals. CONCLUSIONS: In vivo delivery of Adeno-betaARKct is feasible in the infarcted/failing heart by coronary catheterization; expression of betaARKct results in marked reversal of ventricular dysfunction. Thus, inhibition of betaARK1 provides a novel treatment strategy for improving the cardiac performance of the post-MI heart.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS: Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS: These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase 1 (beta ARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the beta ARK1 gene in mice by homologous recombination. No homozygote beta ARK1-/- embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, beta ARK1-/- embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the "thin myocardium syndrome" observed upon gene inactivation of several transcription factors (RXR alpha, N-myc, TEF-1, WT-1). Lethality in beta ARK1-/- embryos is likely due to heart failure as they exhibit a > 70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in beta ARK1-/- embryos demonstrate that beta ARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A surface plasmon resonance biosensor method was developed to measure zilpaterol residues in sheep urine. A CM-5 sensor chip previously reacted with ethylenediamine to produce an aminoethyl group was coupled with 4-carboxybutyl zilpaterol activated using EDC/NHS. Five polyclonal and four monoclonal antibodies were screened for their suitability to detect low levels of zilpaterol using the biosensor technology. Total binding was greater for polyclonal than monoclonal antibodies, but a less diluted antibody solution was required for polyclonal antibodies. A fixed antibody concentration and various concentrations of zilpaterol were injected to obtain a standard curve for each antibody to allow for B-0 and IC50 determination. The stability of the assay was assessed by the consistency of B0 in repeated experiments extending at least six hours. A measure of non-specific binding allowed the assessment of the specificity of the antibody-immobilized ligand interaction. The effect of varying concentrations of urine on B-0 and IC50 was evaluated to assess the degree of

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cardiac neuronal nitric-oxide synthase (nNOS) has been described as a modulator of cardiac contractility. We have demonstrated previously that isoform 4b of the sarcolemmal calcium pump (PMCA4b) binds to nNOS in the heart and that this complex regulates beta-adrenergic signal transmission in vivo. Here, we investigated whether the nNOS-PMCA4b complex serves as a specific signaling modulator in the heart. PMCA4b transgenic mice (PMCA4b-TG) showed a significant reduction in nNOS and total NOS activities as well as in cGMP levels in the heart compared with their wild type (WT) littermates. In contrast, PMCA4b-TG hearts showed an elevation in cAMP levels compared with the WT. Adult cardiomyocytes isolated from PMCA4b-TG mice demonstrated a 3-fold increase in Ser(16) phospholamban (PLB) phosphorylation as well as Ser(22) and Ser(23) cardiac troponin I (cTnI) phosphorylation at base line compared with the WT. In addition, the relative induction of PLB phosphorylation and cTnI phosphorylation following isoproterenol treatment was severely reduced in PMCA4b-TG myocytes, explaining the blunted physiological response to the beta-adrenergic stimulation. In keeping with the data from the transgenic animals, neonatal rat cardiomyocytes overexpressing PMCA4b showed a significant reduction in nitric oxide and cGMP levels. This was accompanied by an increase in cAMP levels, which led to an increase in both PLB and cTnI phosphorylation at base line. Elevated cAMP levels were likely due to the modulation of cardiac phosphodiesterase, which determined the balance between cGMP and cAMP following PMCA4b overexpression. In conclusion, these results showed that the nNOS-PMCA4b complex regulates contractility via cAMP and phosphorylation of both PLB and cTnI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Récemment plusieurs récepteurs couplés aux protéines G (RCPGs) ont été caractérisés au niveau des membranes intracellulaires, dont la membrane nucléaire. Notre objectif était de déterminer si les sous-types de récepteurs β-adrénergiques (βAR) et leurs machineries de signalisation étaient fonctionnels et localisés à la membrane nucléaire des cardiomyocytes. Nous avons démontré la présence des β1AR et β3AR, mais pas du β2AR à la membrane nucléaire de myocytes ventriculaires adultes par immunobuvardage, par microscopie confocale, et par des essais fonctionnels. De plus, certains partenaires de signalisation comme les protéines GαS, Gαi, l’adénylate cyclase II, et V/VI y étaient également localisés. Les sous-types de βAR nucléaires étaient fonctionnels puisqu'ils pouvaient lier leurs ligands et activer leurs effecteurs. En utilisant des noyaux isolés, nous avons observé que l'agoniste non-sélectif isoprotérénol (ISO), et que le BRL37344, un ligand sélectif du β3AR, stimulaient l'initiation de la synthèse de l’ARN, contrairement à l'agoniste sélectif du β1AR, le xamotérol. Cette synthèse était abolie par la toxine pertussique (PTX). Cependant, la stimulation des récepteurs nucléaires de type B de l’endothéline (ETB) causaient une réduction de l'initiation de la synthèse d’ARN. Les voies de signalisations impliquées dans la régulation de la synthèse d’ARN par les RCPGs ont ensuite été étudiées en utilisant des noyaux isolés stimulés par des agonistes en présence ou absence de différents inhibiteurs des voies MAP Kinases (proteines kinases activées par mitogènes) et de la voie PI3K/PKB. Les protéines impliquées dans les voies de signalisation de p38, JNK, ERK MAP Kinase et PKB étaient présents dans les noyaux isolés. L'inhibition de PKB par la triciribine, inhibait la synthèse d’ARN. Nous avons ensuite pu mettre en évidence par qPCR que la stimulation par l’ISO entrainait une augmentation du niveau d'ARNr 18S ainsi qu’une diminution de l'expression d’ARNm de NFκB. En contraste, l’ET-1 n’avait aucun effet sur le niveau d’expression de l’ARNr 18S. Nous avons ensuite montré que la stimulation par l’ISO réduisait l’expression de plusieurs gènes impliqués dans l'activation de NFκB, tandis que l’inhibition de ERK1/2 et PKB renversait cet effet. Un microarray global nous a ensuite permis de démontrer que les βARs et les ETRs nucléaires régulaient un grand nombre de gènes distincts. Finalement, les βARs et ETRs nucléaires augmentaient aussi une production de NO de noyaux isolés, ce qui pouvait être inhibée par le LNAME. Ces résultats ont été confirmés dans des cardiomyocytes intacts en utilisant des analogues cagés et perméables d’ISO et de l'ET-1: l'augmentation de NO nucléaire détectée par DAF2-DA, causée par l'ET-1 et l'ISO, pouvait être prévenue par le LNAME. Finalement, l’augmentation de l’initiation de la transcription induite par l'ISO était aussi bloquée par le L-NAME ou par un inbitheur de PKG, le KT5823, suggérant que la voie NO-GC-PKG est impliquée dans la régulation de la transcription par les βAR. En conclusion, les βARs et les ETRs nucléaires utilisent des voies de signalisation différentes et exercent ainsi des effets distincts sur l’expression des gènes cardiaques. Ils représentent donc une avenue intéressante pour le développement de drogues pharmacologiques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many viruses, including human influenza A virus, have developed strategies for counteracting the host type I interferon (IFN) response. We have explored whether avian influenza viruses were less capable of combating the type I IFN response in mammalian cells, as this might be a determinant of host range restriction. A panel of avian influenza viruses isolated between 1927 and 1997 was assembled. The selected viruses showed variation in their ability to activate the expression of a reporter gene under the control of the IFN-beta promoter and in the levels of IFN induced in mammalian cells. Surprisingly, the avian NS1 proteins expressed alone or in the genetic background of a human influenza virus controlled IFN-beta induction in a manner similar to the NS1 protein of human strains. There was no direct correlation between the IFN-beta induction and replication of avian influenza viruses in human A549 cells. Nevertheless, human cells deficient in the type I IFN system showed enhanced replication of the avian viruses studied, implying that the human type I IFN response limits avian influenza viruses and can contribute to host range restriction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homologous desensitization of beta(2)-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta(2)-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta(2)-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homologous desensitization of beta(2)-adrenergic receptors has been shown to be mediated by phosphorylation of the agonist-stimulated receptor by G-protein-coupled receptor kinase 2 (GRK2) followed by binding of beta-arrestins to the phosphorylated receptor. Binding of beta-arrestin to the receptor is a prerequisite for subsequent receptor desensitization, internalization via clathrin-coated pits, and the initiation of alternative signaling pathways. In this study we have investigated the interactions between receptors and beta-arrestin2 in living cells using fluorescence resonance energy transfer. We show that (a) the initial kinetics of beta-arrestin2 binding to the receptor is limited by the kinetics of GRK2-mediated receptor phosphorylation; (b) repeated stimulation leads to the accumulation of GRK2-phosphorylated receptor, which can bind beta-arrestin2 very rapidly; and (c) the interaction of beta-arrestin2 with the receptor depends on the activation of the receptor by agonist because agonist withdrawal leads to swift dissociation of the receptor-beta-arrestin2 complex. This fast agonist-controlled association and dissociation of beta-arrestins from prephosphorylated receptors should permit rapid control of receptor sensitivity in repeatedly stimulated cells such as neurons.