156 resultados para Adherencia
Resumo:
En este artículo se analizan los materiales de la bóveda encamonada que cubre el Salón de Plenos del Senado de España (hacia 1814-1820). Se han determinado en particular las características físico-mecánicas del mortero de yeso aplicado sobre vigas, tablas y enlistonados de madera de pino, entomizados con fibra de esparto para asegurar la adherencia y conformar la superficie de la bóveda. Con los análisis de DRX, SEM e IR, se ha completado la caracterización del mortero que presenta adiciones de cerámica cocida.
Resumo:
Correlación entre adherencia a la dieta y el ejercicio en programas de perdida de peso en función del sexo
Resumo:
Introducción: Tanto el sobrepeso como la obesidad son un serio problema de salud que se encuentra en un alto porcentaje de la población española. El Estudio “Programas de Nutrición y Actividad Física para el Tratamiento del Sobrepeso y la Obesidad” (PRONAF) ha intentado optimizar el abordaje a dicho problema de salud con excelentes resultados. Las personas estudiadas en el presente trabajo pertenecieron al estudio PRONAF. Objetivo: Describir la evolución de los dos participantes en el proyecto PRONAF, analizando los motivos para la consecución o no del objetivo previsto. Material y métodos: El estudio PRONAF se llevó a cabo con 119 personas con sobrepeso y 120 personas con obesidad, con edades comprendidas entre los 18 y los 50 años, de nacionalidad española y tuvo una duración de 24 semanas. Los sujetos fueron aleatoriamente distribuidos en cuatro grupos; el primero realizaba entrenamiento con cargas más dieta; el segundo, entrenamiento aeróbico más dieta; el tercero una combinación de entrenamiento con cargas y aeróbico más dieta; el cuarto grupo, al que se puede denominar “control”, recibió recomendaciones de actividad física a realizar semanalmente y pautas nutricionales. Las personas analizadas en el presente trabajo pertenecieron al grupo “entrenamiento con cargas y aeróbico más dieta”. Resultados: Los resultados obtenidos revelan que, a pesar de haber perdido menos peso, Federico ha tenido más adherencia a la dieta que Juan y que, Juan, a pesar de tener mayor predisposición genética a ser obeso y perder con más dificultad peso, gracias a su alta adherencia al ejercicio, ha perdido más peso. Conclusiones: Tras haber analizado en profundidad los parámetros que han podido influir en la consecución de mayor pérdida de peso en Juan, se puede justificar que, para ambas personas, la adherencia al ejercicio ha tenido mayor repercusión que la adherencia a la dieta y que, los 3 genes en los que muestran diferencias ambas personas no pueden explicar la mayor pérdida de peso que ha tenido lugar en Juan.
Resumo:
Siempre que se pretende investigar en el mundo del hormigón no se utiliza el árido calizo para realizar los ensayos, se utilizan áridos silícicos como patrón, y los resultados obtenidos se extrapola a los áridos calizos. Esto se ha demostrado no correcto ya que no es extrapolable los resultados en muchos casos, y este artículo es un ejemplo, y normalmente el comportamiento del árido calizo es más favorable. Los ensayos realizados con árido grueso, árido fino y finos calizos han demostrado unos óptimos resultados para hormigones autocompactantes (HAC). Los finos calizos obtienen un óptimo resultado en la plasticidad y estabilidad del hormigón, con la ayuda del aditivo de policarboxilato y el modulador de viscosidad, se consiguen todas las clases de hormigones autocompactantes para rampas, para muros y hasta para suelos (forjados-soleras), los áridos gruesos obtienen una óptima adherencia con el cemento y los áridos finos rellenan los huecos que no han ocupado los finos. Consiguiéndose resistencias mecánicas hasta los 65 MPa a los 28 días y manteniendo las características de los hormigones autocompactantes. Por tanto se concluye que el árido calizo es un excelente árido para la obtención de hormigones autocompactantes, pero es necesaria una cuidada distribución granulométrica, una adecuada dosificación y un enérgico amasado para conseguir la homogeneidad del hormigón.
Resumo:
Las uniones estructurales mecánicas y adhesivas requieren la combinación de un número importante de parámetros para la obtención de la continuidad estructural que exigen las condiciones de diseño. Las características de las uniones presentan importantes variaciones, ligadas a las condiciones de ejecución, tanto en uniones mecánicas como especialmente en uniones adhesivas y mixtas (unión mecánica y adhesiva, también conocidas como uniones híbridas). Las propiedades mecánicas de las uniones adhesivas dependen de la naturaleza y propiedades de los adhesivos y también de muchos otros parámetros que influyen directamente en el comportamiento de estas uniones. Algunos de los parámetros más significativos son: el acabado superficial de los materiales, área y espesor de la capa adhesiva, diseño adecuado, secuencia de aplicación, propiedades químicas de la superficie y preparación de los sustratos antes de aplicar el adhesivo. Los mecanismos de adhesión son complejos. En general, cada unión adhesiva solo puede explicarse considerando la actuación conjunta de varios mecanismos de adhesión. No existen adhesivos universales para un determinado material o aplicación, por lo que cada pareja sustrato-adhesivo requiere un particular estudio y el comportamiento obtenido puede variar, significativamente, de uno a otro caso. El fallo de una junta adhesiva depende del mecanismo cohesión-adhesión, ligado a la secuencia y modo de ejecución de los parámetros operacionales utilizados en la unión. En aplicaciones estructurales existen un número muy elevado de sistemas de unión y de posibles sustratos. En este trabajo se han seleccionado cuatro adhesivos diferentes (cianoacrilato, epoxi, poliuretano y silano modificado) y dos procesos de unión mecánica (remachado y clinchado). Estas uniones se han aplicado sobre chapas de acero al carbono en diferentes estados superficiales (chapa blanca, galvanizada y prepintada). Los parámetros operacionales analizados han sido: preparación superficial, espesor del adhesivo, secuencia de aplicación y aplicación de presión durante el curado. Se han analizado tanto las uniones individuales como las uniones híbridas (unión adhesiva y unión mecánica). La combinación de procesos de unión, sustratos y parámetros operacionales ha dado lugar a la preparación y ensayo de más de mil muestras. Pues, debido a la dispersión de resultados característica de las uniones adhesivas, para cada condición analizada se han ensayado seis probetas. Los resultados obtenidos han sido: El espesor de adhesivo utilizado es una variable muy importante en los adhesivos flexibles, donde cuanto menor es el espesor del adhesivo mayor es la resistencia mecánica a cortadura de la unión. Sin embargo en los adhesivos rígidos su influencia es mucho menor. La naturaleza de la superficie es fundamental para una buena adherencia del adhesivo al substrato, que repercute en la resistencia mecánica de la unión. La superficie que mejor adherencia presenta es la prepintada, especialmente cuando existe una alta compatibilidad entre la pintura y el adhesivo. La superficie que peor adherencia tiene es la galvanizada. La secuencia de aplicación ha sido un parámetro significativo en las uniones híbridas, donde los mejores resultados se han obtenido cuando se aplicaba primero el adhesivo y la unión mecánica se realizaba antes del curado del adhesivo. La aplicación de presión durante el curado se ha mostrado un parámetro significativo en los adhesivos con poca capacidad para el relleno de la junta. En los otros casos su influencia ha sido poco relevante. El comportamiento de las uniones estructurales mecánicas y adhesivas en cuanto a la resistencia mecánica de la unión puede variar mucho en función del diseño de dicha unión. La resistencia mecánica puede ser tan grande que falle antes el substrato que la unión. Las mejores resistencias se consiguen diseñando las uniones con adhesivo cianoacrilato, eligiendo adecuadamente las condiciones superficiales y operacionales, por ejemplo chapa blanca aplicando una presión durante el curado de la unión. La utilización de uniones mixtas aumenta muy poco o nada la resistencia mecánica, pero a cambio proporciona una baja dispersión de resultados, siendo destacable para la superficie galvanizada, que es la que presenta peor reproducibilidad cuando se realizan uniones sólo con adhesivo. Las uniones mixtas conducen a un aumento de la deformación antes de la rotura. Los adhesivos dan rotura frágil y las uniones mecánicas rotura dúctil. La unión mixta proporciona ductilidad a la unión. Las uniones mixtas también pueden dar rotura frágil, esto sucede cuando la resistencia del adhesivo es tres veces superior a la resistencia de la unión mecánica. Las uniones híbridas mejoran la rigidez de la junta, sobre todo se aprecia un aumento importante en las uniones mixtas realizadas con adhesivos flexibles, pudiendo decirse que para todos los adhesivos la rigidez de la unión híbrida es superior. ABSTRACT The mechanical and adhesive structural joints require the combination of a large number of parameters to obtain the structural continuity required for the design conditions. The characteristics of the junctions have important variations, linked to performance conditions, in mechanical joints as particular in mixed adhesive joints (mechanical and adhesive joints, also known as hybrid joints). The mechanical properties of the adhesive joints depend of the nature and properties of adhesives and also of many other parameters that directly influence in the behavior of these joints. Some of the most significant parameters are: the surface finished of the material, area and thickness of the adhesive layer, suitable design, and application sequence, chemical properties of the surface and preparation of the substrate before applying the adhesive. Adhesion mechanisms are complex. In general, each adhesive joint can only be explained by considering the combined action of several adhesions mechanisms. There aren’t universal adhesives for a given material or application, so that each pair substrate-adhesive requires a particular study and the behavior obtained can vary significantly from one to another case. The failure of an adhesive joint depends on the cohesion-adhesion mechanism, linked to the sequence and manner of execution of the operational parameters used in the joint. In the structural applications, there are a very high number of joining systems and possible substrates. In this work we have selected four different adhesives (cyanoacrylate, epoxy, polyurethane and silano modified) and two mechanical joining processes (riveting and clinching). These joints were applied on carbon steel with different types of surfaces (white sheet, galvanized and pre-painted). The operational parameters analyzed were: surface preparation, thickness of adhesive, application sequence and application of pressure during curing. We have analyzed individual joints both as hybrid joints (adhesive joint and mechanical joint). The combination of joining processes, substrates and operational parameters has resulted in the preparation and testing of over a thousand specimens. Then, due to the spread of results characteristic of adhesive joints, for each condition analyzed we have tested six samples. The results have been: The thickness of adhesive used is an important variable in the flexible adhesives, where the lower the adhesive thickness greater the shear strength of the joint. However in rigid adhesives is lower influence. The nature of the surface is essential for good adherence of the adhesive to the substrate, which affects the shear strength of the joint. The surface has better adherence is preprinted, especially when there is a high compatibility between the paint and the adhesive. The surface which has poor adherence is the galvanized. The sequence of application has been a significant parameter in the hybrid junctions, where the best results are obtained when applying first the adhesive and the mechanical joint is performed before cured of the adhesive. The application of pressure during curing has shown a significant parameter in the adhesives with little capacity for filler the joint. In other cases their influence has been less relevant. The behavior of structural mechanical and adhesive joints in the shear strength of the joint can vary greatly depending on the design of such a joint. The shear strength may be so large that the substrate fails before the joint. The best shear strengths are achieved by designing the junctions with cyanoacrylate adhesive, by selecting appropriately the surface and operating conditions, for example by white sheet applying a pressure during curing of the joint. The use of hybrid joints no increase shear strength, but instead provides a low dispersion of results, being remarkable for the galvanized surface, which is the having worst reproducibility when performed bonded joints. The hybrid joints leading to increased deformation before rupture. The joints witch adhesives give brittle fracture and the mechanics joints give ductile fracture. Hybrid joint provides ductility at the joint. Hybrid joint can also give brittle fracture, this happens when the shear strength of the adhesive is three times the shear strength of the mechanical joint. The hybrid joints improve stiffness of joint, especially seen a significant increase in hybrid joints bonding with flexible adhesives, can be said that for all the adhesives, the hybrid junction stiffness is higher.
Resumo:
El refuerzo de estructuras existentes mediante el encolado exterior de láminas de polímeros reforzados con fibras (FRP) se ha convertido en la aplicación más común de los materiales compuestos avanzados en construcción. Estos materiales presentan muchas ventajas frente a los materiales convencionales (sin corrosión, ligeros, de fácil aplicación, etc.). Pero a pesar de las numerosas investigaciones realizadas, aún persisten ciertas dudas sobre algunos aspectos de su comportamiento y las aplicaciones prácticas se llevan a cabo sólo con la ayuda de guías, sin que haya una normativa oficial. El objetivo de este trabajo es incrementar el conocimiento sobre esta técnica de refuerzo, y más concretamente, sobre el refuerzo a flexión de estructuras de fábrica. Con frecuencia el elemento reforzado es de hormigón armado y las láminas de FRP encoladas al exterior sirven para mejorar su resistencia a flexión, cortante o compresión (encamisados). Sin embargo su empleo en otros materiales como las estructuras de fábrica resulta muy prometedor. Las fábricas se caracterizan por soportar muy bien los esfuerzos de compresión pero bastante mal los de tracción. Adherir láminas de materiales compuestos puede servir para mejorar la capacidad resistente de elementos de fábrica sometidos a esfuerzos de flexión. Pero para ello, debe quedar garantizada una correcta adherencia entre el FRP y la fábrica, especialmente en edificios antiguos cuya superficie puede estar deteriorada por encontrarse a la intemperie o por el propio paso del tiempo. En el capítulo II se describen los objetivos fundamentales del trabajo y el método seguido. En el capítulo III se hace una amplia revisión del estado de conocimiento sobre el tema. En el apartado III.1 se detallan las principales características y propiedades mecánicas de fibras, matrices y materiales compuestos así como sus principales aplicaciones, haciendo especial hincapié en aspectos relativos a su durabilidad. En el apartado III.2 se incluye una revisión histórica de las líneas de investigación, tanto teóricas como empíricas, publicadas sobre estructuras de hormigón reforzadas a flexión encolando materiales compuestos. El apartado III.3 se centra en el aspecto fundamental de la adherencia refuerzo-soporte. Se hace un repaso a distintos modelos propuestos para prevenir el despegue distinguiendo si éste se inicia en la zona de anclaje o si está inducido por fisuras en la zona interior del elemento. Se observa falta de consenso en las propuestas. Además en este punto se relatan las campañas experimentales publicadas acerca de la adherencia entre materiales compuestos y fábricas. En el apartado III.4 se analizan las particularidades de las estructuras de fábrica. Además, se revisan algunas de las investigaciones relativas a la mejora de su comportamiento a flexión mediante láminas de FRP. El comportamiento mecánico de muros reforzados solicitados a flexión pura (sin compresión) ha sido documentado por varios autores, si bien es una situación poco frecuente en fábricas reales. Ni el comportamiento mecánico de muros reforzados solicitados a flexocompresión ni la incidencia que el nivel de compresión soportado por la fábrica tiene sobre la capacidad resistente del elemento reforzado han sido suficientemente tratados. En cuanto a los trabajos teóricos, las diferentes propuestas se basan en los métodos utilizados para hormigón armado y comparten los principios habituales de cálculo. Sin embargo, presentan diferencias relativas, sobre todo, a tres aspectos: 1) la forma de modelar el comportamiento de la fábrica, 2) el valor de deformación de cálculo del refuerzo, y 3) el modo de fallo que se considera recomendable buscar con el diseño. A pesar de ello, el ajuste con la parte experimental de cada trabajo suele ser bueno debido a una enorme disparidad en las variables consideradas. Cada campaña presenta un modo de fallo característico y la formulación que se propone resulta apropiada para él. Parece necesario desarrollar un método de cálculo para fábricas flexocomprimidas reforzadas con FRP que pueda ser utilizado para todos los posibles fallos, tanto atribuibles a la lámina como a la fábrica. En el apartado III.4 se repasan algunas lesiones habituales en fábricas solicitadas a flexión y se recogen ejemplos de refuerzos con FRP para reparar o prevenir estos daños. Para mejorar el conocimiento sobre el tema, se llevan a cabo dos pequeñas campañas experimentales realizadas en el Instituto de Ciencias de la Construcción Eduardo Torroja. La primera acerca de la adherencia de materiales compuestos encolados a fábricas deterioradas (apartado IV.1) y la segunda sobre el comportamiento estructural a flexocompresión de probetas de fábrica reforzadas con estos materiales (apartado IV.2). En el capítulo V se analizan algunos de los modelos de adherencia propuestos para prevenir el despegue del extremo del refuerzo. Se confirma que las predicciones obtenidas con ellos resultan muy dispares. Se recopila una base de datos con los resultados experimentales de campañas sobre adherencia de FRP a fábricas extraídas de la literatura y de los resultados propios de la campaña descrita en el punto IV.1. Esta base de datos permite conocer cual de los métodos analizados resulta más adecuado para dimensionar el anclaje de láminas de FRP adheridas a fábricas. En el capítulo VI se propone un método para la comprobación en agotamiento de secciones de fábrica reforzadas con materiales compuestos sometidas a esfuerzos combinados de flexión y compresión. Está basado en el procedimiento de cálculo de la capacidad resistente de secciones de hormigón armado pero adaptado a las fábricas reforzadas. Para ello, se utiliza un diagrama de cálculo tensión deformación de la fábrica de tipo bilineal (acorde con el CTE DB SE-F) cuya simplicidad facilita el desarrollo de toda la formulación al tiempo que resulta adecuado para predecir la capacidad resistente a flexión tanto para fallos debidos al refuerzo como a la fábrica. Además se limita la deformación de cálculo del refuerzo teniendo en consideración ciertos aspectos que provocan que la lámina adherida no pueda desarrollar toda su resistencia, como el desprendimiento inducido por fisuras en el interior del elemento o el deterioro medioambiental. En concreto, se propone un “coeficiente reductor por adherencia” que se determina a partir de una base de datos con 68 resultados experimentales procedentes de publicaciones de varios autores y de los ensayos propios de la campaña descrita en el punto IV.2. También se revisa la formulación propuesta con ayuda de la base de datos. En el capítulo VII se estudia la incidencia de las principales variables, como el axil, la deformación de cálculo del refuerzo o su rigidez, en la capacidad final del elemento. Las conclusiones del trabajo realizado y las posibles líneas futuras de investigación se exponen en el capítulo VIII. ABSTRACT Strengthening of existing structures with externally bonded fiber reinforced polymers (FRP) has become the most common application of advanced composite materials in construction. These materials exhibit many advantages in comparison with traditional ones (corrosion resistance, light weight, easy to apply, etc.). But despite countless researches have been done, there are still doubts about some aspects of their behaviour and applications are carried out only with the help of guidelines, without official regulations. The aim of this work is to improve the knowledge on this retrofitting technique, particularly in regard to flexural strengthening of masonry structures. Reinforced concrete is often the strengthened material and external glued FRP plates are used to improve its flexural, shear or compressive (by wrapping) capacity. However the use of this technique on other materials like masonry structures looks promising. Unreinforced masonry is characterized for being a good material to support compressive stresses but really bad to withstand tensile ones. Glue composite plates can improve the flexural capacity of masonry elements subject to bending. But a proper bond between FRP sheet and masonry must be ensured to do that, especially in old buildings whose surface can be damaged due to being outside or ageing. The main objectives of the work and the methodology carried out are described In Chapter II. An extensive overview of the state of art is done in Chapter III. In Section III.1 physical and mechanical properties of fibers, matrix and composites and their main applications are related. Durability aspects are especially emphasized. Section III.2 includes an historical overview of theoretical and empirical researches on concrete structures strengthened gluing FRP plates to improve their flexural behaviour. Section III.3 focuses on the critical point of bonding between FRP and substrate. Some theoretical models to prevent debonding of FRP laminate are reviewed, it has made a distinction between models for detachment at the end of the plate or debonding in the intermediate zones due to the effects of cracks. It is observed a lack of agreement in the proposals. Some experimental studies on bonding between masonry and FRP are also related in this chapter. The particular characteristics of masonry structures are analyzed in Section III.4. Besides some empirical and theoretical investigations relative to improve their flexural capacity with FRP sheets are reviewed. The mechanical behaviour of strengthened walls subject to pure bending (without compression) has been established by several authors, but this is an unusual situation for real masonry. Neither mechanical behaviour of walls subject to bending and compression nor influence of axial load in the final capacity of the strengthened element are adequately studied. In regard to theoretical studies, the different proposals are based on reinforced concrete analytical methods and share common design principles. However, they present differences, especially, about three aspects: 1) the constitutive law of masonry, 2) the value of ultimate FRP strain and 3) the desirable failure mode that must be looked for. In spite of them, a good agreement between each experimental program and its theoretical study is often exhibited due to enormous disparity in considered test parameters. Each experimental program usually presents a characteristic failure mode and the proposed formulation results appropriate for this one. It seems necessary to develop a method for FRP strengthened walls subject to bending and compression enable for all failure modes (due to FRP or masonry). Some common damages in masonry subject to bending are explained in Section III.4. Examples of FRP strengthening to repair or prevent these damages are also written. Two small experimental programs are carried out in Eduardo Torroja Institute to improve the knowledge on this topic. The first one is concerned about the bond between FRP plates and damaged masonry (section IV.1) and the second one is related to the mechanical behaviour of the strengthened masonry specimens subject to out of plane bending combined with axial force (section IV.2). In the Chapter V some bond models to prevent the debonding at the FRP plate end are checked. It is confirmed that their predictions are so different. A pure-shear test database is compiled with results from the existing literature and others from the experimental program described in section IV.1. This database lets know which of the considered model is more suitable to design anchorage lengths of glued FRP to masonry. In the Chapter VI a method to check unreinforced masonry sections with external FRP strengthening subject to bending and compression to the ultimate limit state is proposed. This method is based on concrete reinforced one, but it is adapted to strengthened masonry. A bilinear constitutive law is used for masonry (according to CTE DB SE-F). Its simplicity helps to develop the model formulation and it has proven to be suitable to predict bending capacity either for FRP failures or masonry crushing. With regard to FRP, the design strain is limited. It is taken into account different aspects which cause the plate can’t reach its ultimate strength, like intermediate FRP debonding induced by opening cracking or environmental damage. A “bond factor” is proposed. It is obtained by means of an experimental bending test database that includes 68 results from the existing literature and from the experimental program described in section IV.2. The proposed formulation has also been checked with the help of bending database. The effects of the main parameters, like axial load, FRP design effective strain or FRP stiffness, on the bending capacity of the strengthened element are studied in Chapter VII. Finally, the main conclusions from the work carried out are summarized in Chapter VIII. Future lines of research to be explored are suggested as well.
Resumo:
La artroplastia de cadera se considera uno de los mayores avances quirúrgicos de la Medicina. La aplicación de esta técnica de Traumatología se ha incrementado notablemente en los últimos anos, a causa principalmente del progresivo incremento de la esperanza de vida. En efecto, con la edad aumentan los problemas de artrosis y osteoporosis, enfermedades típicas de las articulaciones y de los huesos que requieren en muchos casos la sustitución protésica total o parcial de la articulación. El buen comportamiento funcional de una prótesis depende en gran medida de la estabilidad primaria, es decir, el correcto anclaje de la prótesis en el momento de su implantación. Las prótesis no cementadas basan su éxito a largo plazo en la osteointegración que tiene lugar entre el material protésico y el tejido óseo, y para lograrla es imprescindible conseguir unas buenas condiciones de estabilidad primaria. El aflojamiento aséptico es la principal causa de fallo de artroplastia total de cadera. Este es un fenómeno en el que, debido a complejas interacciones de factores mecánicos y biológicos, se producen movimientos relativos que comprometen la funcionalidad del implante. La minimización de los correspondientes danos depende en gran medida de la detección precoz del aflojamiento. Para lograr la detección temprana del aflojamiento aséptico del vástago femoral se han ensayado diferentes técnicas, tanto in vivo como in vitro: análisis numéricos y técnicas experimentales basadas en sensores de movimientos provocados por cargas transmitidas natural o artificialmente, tales como impactos o vibraciones de distintas frecuencias. Los montajes y procedimientos aplicados son heterogéneos y, en muchas ocasiones, complejos y costosos, no existiendo acuerdo sobre una técnica simple y eficaz de aplicación general. Asimismo, en la normativa vigente que regula las condiciones que debe cumplir una prótesis previamente a su comercialización, no hay ningún apartado referido específicamente a la evaluación de la bondad del diseño del vástago femoral con respecto a la estabilidad primaria. El objetivo de esta tesis es desarrollar una metodología para el análisis, in vitro, de la estabilidad de un vástago femoral implantado, a fin de poder evaluar las técnicas de implantación y los diferentes diseños de prótesis previamente a su oferta en el mercado. Además se plantea como requisito fundamental que el método desarrollado sea sencillo, reversible, repetible, no destructivo, con control riguroso de parámetros (condiciones de contorno de cargas y desplazamientos) y con un sistema de registro e interpretación de resultados rápido, fiable y asequible. Como paso previo, se ha realizado un análisis cualitativo del problema de contacto en la interfaz hueso-vástago aplicando una técnica optomecánica del campo continuo (fotoelasticidad). Para ello se han fabricado tres modelos en 2D del conjunto hueso-vástago, simulando tres tipos de contactos en la interfaz: contacto sin adherencia y con holgura, contacto sin adherencia y sin holgura, y contacto con adherencia y homogéneo. Aplicando la misma carga a cada modelo, y empleando la técnica de congelación de tensiones, se han visualizado los correspondientes estados tensionales, siendo estos más severos en el modelo de unión sin adherencia, como cabía esperar. En todo caso, los resultados son ilustrativos de la complejidad del problema de contacto y confirman la conveniencia y necesidad de la vía experimental para el estudio del problema. Seguidamente se ha planteado un ensayo dinámico de oscilaciones libres con instrumentación de sensores resistivos tipo galga extensométrica. Las muestras de ensayo han sido huesos fémur en todas sus posibles variantes: modelos simplificados, hueso sintético normalizado y hueso de cadáver, seco y fresco. Se ha diseñado un sistema de empotramiento del extremo distal de la muestra (fémur) con control riguroso de las condiciones de anclaje. La oscilación libre de la muestra se ha obtenido mediante la liberación instantánea de una carga estética determinada y aplicada previamente, bien con una maquina de ensayo o bien por gravedad. Cada muestra se ha instrumentado con galgas extensométricas convencionales cuya señal se ha registrado con un equipo dinámico comercial. Se ha aplicado un procedimiento de tratamiento de señal para acotar, filtrar y presentar las respuestas de los sensores en el dominio del tiempo y de la frecuencia. La interpretación de resultados es de tipo comparativo: se aplica el ensayo a una muestra de fémur Intacto que se toma de referencia, y a continuación se repite el ensayo sobre la misma muestra con una prótesis implantada; la comparación de resultados permite establecer conclusiones inmediatas sobre los efectos de la implantación de la prótesis. La implantación ha sido realizada por un cirujano traumatólogo utilizando las mismas técnicas e instrumental empleadas en el quirófano durante la práctica clínica real, y se ha trabajado con tres vástagos femorales comerciales. Con los resultados en el dominio del tiempo y de la frecuencia de las distintas aplicaciones se han establecido conclusiones sobre los siguientes aspectos: Viabilidad de los distintos tipos de muestras sintéticas: modelos simplificados y fémur sintético normalizado. Repetibilidad, linealidad y reversibilidad del ensayo. Congruencia de resultados con los valores teóricos deducidos de la teoría de oscilaciones libres de barras. Efectos de la implantación de tallos femorales en la amplitud de las oscilaciones, amortiguamiento y frecuencias de oscilación. Detección de armónicos asociados a la micromovilidad. La metodología se ha demostrado apta para ser incorporada a la normativa de prótesis, es de aplicación universal y abre vías para el análisis de la detección y caracterización de la micromovilidad de una prótesis frente a las cargas de servicio. ABSTRACT Total hip arthroplasty is considered as one of the greatest surgical advances in medicine. The application of this technique on Traumatology has increased significantly in recent years, mainly due to the progressive increase in life expectancy. In fact, advanced age increases osteoarthritis and osteoporosis problems, which are typical diseases of joints and bones, and in many cases require full or partial prosthetic replacement on the joint. Right functional behavior of prosthesis is highly dependent on the primary stability; this means it depends on the correct anchoring of the prosthesis at the time of implantation. Uncemented prosthesis base their long-term success on the quality of osseointegration that takes place between the prosthetic material and bone tissue, and to achieve this good primary stability conditions is mandatory. Aseptic loosening is the main cause of failure in total hip arthroplasty. This is a phenomenon in which relative movements occur, due to complex interactions of mechanical and biological factors, and these micromovements put the implant functionality at risk. To minimize possible damage, it greatly depends on the early detection of loosening. For this purpose, various techniques have been tested both in vivo and in vitro: numerical analysis and experimental techniques based on sensors for movements caused by naturally or artificially transmitted loads, such as impacts or vibrations at different frequencies. The assemblies and methods applied are heterogeneous and, in many cases, they are complex and expensive, with no agreement on the use of a simple and effective technique for general purposes. Likewise, in current regulations for governing the conditions to be fulfilled by the prosthesis before going to market, there is no specific section related to the evaluation of the femoral stem design in relation to primary stability. The aim of this thesis is to develop a in vitro methodology for analyzing the stability of an implanted femoral stem, in order to assess the implantation techniques and the different prosthesis designs prior to its offer in the market. We also propose as a fundamental requirement that the developed testing method should be simple, reversible, repeatable, non-destructive, with close monitoring of parameters (boundary conditions of loads and displacements) and with the availability of a register system to record and interpret results in a fast, reliable and affordable manner. As a preliminary step, we have performed a qualitative analysis of the contact problems in the bone-stem interface, through the application of a continuous field optomechanical technique (photoelasticity). For this proposal three 2D models of bone–stem set, has been built simulating three interface contact types: loosened an unbounded contact, unbounded and fixed contact, and bounded homogeneous contact. By means of applying the same load to each model, and using the stress freezing technique, it has displayed the corresponding stress states, being more severe as expected, in the unbounded union model. In any case, the results clearly show the complexity of the interface contact problem, and they confirm the need for experimental studies about this problem. Afterward a free oscillation dynamic test has been done using resistive strain gauge sensors. Test samples have been femur bones in all possible variants: simplified models, standardized synthetic bone, and dry and cool cadaveric bones. An embedding system at the distal end of the sample with strong control of the anchoring conditions has been designed. The free oscillation of the sample has been obtained by the instantaneous release of a static load, which was previously determined and applied to the sample through a testing machine or using the gravity force. Each sample was equipped with conventional strain gauges whose signal is registered with a marketed dynamic equipment. Then, it has applied a signal processing procedure to delimit, filter and present the time and frequency response signals from the sensors. Results are interpreted by comparing different trials: the test is applied to an intact femur sample which is taken as a reference, and then this test is repeated over the same sample with an implanted prosthesis. From comparison between results, immediate conclusions about the effects of the implantation of the prosthesis can be obtained. It must be said that the implementation has been made by an expert orthopedic surgeon using the same techniques and instruments as those used in clinical surgery. He has worked with three commercial femoral stems. From the results obtained in the time and frequency domains for the different applications the following conclusions have been established: Feasibility of the different types of synthetic samples: simplified models and standardized synthetic femur. Repeatability, linearity and reversibility of the testing method. Consistency of results with theoretical values deduced from the bars free oscillations theory. Effects of introduction of femoral stems in the amplitude, damping and frequencies of oscillations Detection of micromobility associated harmonics. This methodology has been proved suitable to be included in the standardization process of arthroplasty prosthesis, it is universally applicable and it allows establishing new methods for the analysis, detection and characterization of prosthesis micromobility due to functional loads.
Resumo:
A través de los años las estructuras de hormigón armado han ido aumentando su cuota de mercado, sustituyendo a las estructuras de fábrica de piedra o ladrillo y restándole participación a las estructuras metálicas. Uno de los primeros problemas que surgieron al ejecutar las estructuras de hormigón armado, era cómo conectar una fase de una estructura de este tipo a una fase posterior o a una modificación posterior. Hasta los años 80-90 las conexiones de una fase de una estructura de hormigón armado, con otra posterior se hacían dejando en la primera fase placas de acero con garrotas embebidas en el hormigón fresco o barras grifadas recubiertas de poliestireno expandido. Una vez endurecido el hormigón se podían conectar nuevas barras, para la siguiente fase mediante soldadura a la placa de la superficie o enderezando las barras grifadas, para embeberlas en el hormigón fresco de la fase siguiente. Estos sistemas requerían conocer la existencia y alcance de la fase posterior antes de hormigonar la fase previa. Además requerían un replanteo muy exacto y complejo de los elementos de conexión. Otro problema existente en las estructuras de hormigón era la adherencia de un hormigón fresco a un hormigón endurecido previamente, ya que la superficie de contacto de ambos hormigones suponía un punto débil, con una adherencia baja. A partir de los años 80, la industria química de la construcción experimentó un gran avance en el desarrollo de productos capaces de generar una buena adherencia sobre el hormigón endurecido. Este avance tecnológico tenía aplicación tanto en la adherencia del hormigón fresco sobre el hormigón endurecido, como en la adherencia de barras post-instaladas en agujeros de hormigón endurecido. Este sistema se denominó “anclajes adherentes de barras de acero en hormigón endurecido”. La forma genérica de ejecutarlos es hacer una perforación cilíndrica en el soporte de hormigón, con una herramienta especifica como un taladro, limpiar la perforación, llenarla del material adherente y finalmente introducir la barra de acero. Los anclajes adherentes se dividen en anclajes cementosos y anclajes químicos, siendo estos últimos los más habituales, fiables, resistentes y fáciles de ejecutar. El uso del anclaje adherente de barras de acero en hormigón endurecido se ha extendido por todo el espectro productivo, siendo muy habitual tanto en construcción de obras de hormigón armado de obra civil y edificación, como en obras industriales, instalaciones o fijación de elementos. La ejecución de un anclaje de una barra de acero en hormigón endurecido depende de numerosas variables, que en su conjunto, o de forma aislada pueden afectar de forma notable a la resistencia del anclaje. Nos referimos a variables de los anclajes, que a menudo no se consideran tales como la dirección de la perforación, la máquina de perforación y el útil de perforación utilizado, la diferencia de diámetros entre el diámetro del taladro y la barra, el tipo de material de anclaje, la limpieza del taladro, la humedad del soporte, la altura del taladro, etc. La utilización en los últimos años de los hormigones Autocompactables, añade una variable adicional, que hasta ahora apenas ha sido estudiada. En línea con lo apuntado, la presente tesis doctoral tiene como objetivo principal el estudio de las condiciones de ejecución en la resistencia de los anclajes en hormigón convencional y autocompactable. Esta investigación se centra principalmente en la evaluación de la influencia de una serie de variables sobre la resistencia de los anclajes, tanto en hormigón convencional como en un hormigón autocompactable. Para este estudio ha sido necesaria la fabricación de dos soportes de hormigón sobre los cuales desarrollar los ensayos. Uno de los bloques se ha fabricado con hormigón convencional y el otro con hormigón autocompactable. En cada pieza de hormigón se han realizado 174 anclajes con barras de acero, variando los parámetros a estudiar, para obtener resultados de todas las variables consideradas. Los ensayos a realizar en ambos bloques son exactamente iguales, para poder comparar la diferencia entre un anclaje en un soporte de hormigón con vibrado convencional (HVC) y un hormigón autocompactante (HAC). De cada tipo de ensayo deseado se harán dos repeticiones en la misma pieza. El ensayo de arrancamiento de las barras se realizara con un gato hidráulico hueco, con un sistema de instrumentación de lectura y registro de datos en tiempo real. El análisis de los resultados, realizado con una potente herramienta estadística, ha permitido determinar y evaluar numéricamente la influencia de los variables consideradas en la resistencia de los anclajes realizados. Así mismo ha permitido diferenciar los resultados obtenidos en los hormigones convencionales y autocompactantes, tanto desde el punto de vista de la resistencia mecánica, como de las deformaciones sufridas en el arrancamiento. Se define la resistencia mecánica de un anclaje, como la fuerza desarrollada en la dirección de la barra, para hacer su arrancamiento del soporte. De la misma forma se considera desplazamiento, a la separación entre un punto fijo de la barra y otro del soporte, en la dirección de la barra. Dichos puntos se determinan cuando se ha terminado el anclaje, en la intersección de la superficie plana del soporte, con la barra. Las conclusiones obtenidas han permitido establecer qué variables afectan a la ejecución de los anclajes y en qué cuantía lo hacen, así como determinar la diferencia entre los anclajes en hormigón vibrado convencional y hormigón autocompactante, con resultados muy interesantes, que permiten valorar la influencia de dichas variables. Dentro de las conclusiones podemos destacar tres grupos, que denominaremos como de alta influencia, baja influencia y sin influencia. En todos los casos hay que hacer el estudio en términos de carga y de desplazamiento. Podemos considerar como de alta influencia, en términos de carga las variables de máquina de perforación y el material de anclaje. En términos de desplazamiento podemos considerar de alta influencia además de la máquina de perforación y el material de anclaje, el diámetro del taladro, así como la limpieza y humedad del soporte. Podemos considerar de baja influencia, en términos de carga las variables de tipo de hormigón, dirección de perforación, limpieza y humedad del soporte. En términos de desplazamiento podemos considerar de baja influencia el tipo de hormigón y la dirección de perforación. Podemos considerar en el apartado de “sin influencia”, en términos de carga las variables de diámetro de perforación y altura del taladro. En términos de desplazamiento podemos considerar como “sin influencia” la variable de altura del taladro. Podemos afirmar que las diferencias entre los valores de carga aumentan de forma muy importante en términos de desplazamiento. ABSTRACT Over the years the concrete structures have been increasing their market share, replacing the masonry structures of stone or brick and subtracting as well the participation of the metallic structures. One of the first problems encountered in the implementing of the reinforced concrete structures was connecting a phase structure of this type at a later stage or a subsequent amendment. Until the 80s and 90s the connections of one phase of a reinforced concrete structure with a subsequent first phase were done by leaving the steel plates embedded in the fresh concrete using hooks or bent bars coated with expanded polystyrene. Once the concrete had hardened new bars could be connected to the next stage by welding them to the surface plate or by straightening the bent bars to embed them in the fresh concrete of the next phase. These systems required a previous knowledge of the existence and scope of the subsequent phase before concreting the previous one. They also required a very precise and complex rethinking of the connecting elements. Another existing problem in the concrete structures was the adhesion of a fresh concrete to a previously hardened concrete, since the contact surface of both concretes leaded to a weak point with low adherence. Since the 80s, the chemicals construction industry experienced a breakthrough in the development of products that generate a good grip on the concrete. This technological advance had its application both in the grip on one hardened fresh concrete and in the adhesion of bar post-installed in holes of hardened concrete. This system was termed as adherent anchors of steel bars in hardened concrete. The generic way of executing this system is by firstly drilling a cylindrical hole in the concrete support using a specific tool such as a drill. Then, cleaning the bore and filling it with bonding material to lastly, introduce the steel bar. These adherent anchors are divided into cement and chemical anchors, the latter being the most common, reliable, durable and easy to run. The use of adhesive anchor of steel bars in hardened concrete has spread across the production spectrum turning itself into a very common solution in both construction of reinforced concrete civil engineering and construction, and industrial works, installations and fixing elements as well. The execution of an anchor of a steel bar in hardened concrete depends on numerous variables which together or as a single solution may significantly affect the strength of the anchor. We are referring to variables of anchors which are often not considered, such as the diameter difference between the rod and the bore, the drilling system, cleansing of the drill, type of anchor material, the moisture of the substrate, the direction of the drill, the drill’s height, etc. During recent years, the emergence of self-compacting concrete adds an additional variable which has hardly been studied so far. According to mentioned this thesis aims to study the main performance conditions in the resistance of conventional and self-compacting concrete anchors. This research is primarily focused on the evaluation of the influence of several variables on the strength of the anchoring, both in conventional concrete and self-compacting concrete. In order to complete this study it has been required the manufacture of two concrete supports on which to develop the tests. One of the blocks has been manufactured with conventional concrete and the other with self-compacting concrete. A total of 174 steel bar anchors have been made in each one of the concrete pieces varying the studied parameters in order to obtain results for all variables considered. The tests to be performed on both blocks are exactly the same in order to compare the difference between an anchor on a stand with vibrated concrete (HVC) and a self-compacting concrete (SCC). Each type of test required two repetitions in the same piece. The pulling test of the bars was made with a hollow jack and with an instrumentation system for reading and recording data in real time. The use of a powerful statistical tool in the analysis of the results allowed to numerically determine and evaluate the influence of the variables considered in the resistance of the anchors made. It has likewise enabled to differentiate the results obtained in the self-compacting and conventional concretes, from both the outlook of the mechanical strength and the deformations undergone by uprooting. The mechanical strength of an anchor is defined as the strength undergone in a direction of the bar to uproot it from the support. Likewise, the movement is defined as the separation between a fixed point of the bar and a fixed point from the support considering the direction of the bar. These points are only determined once the anchor is finished, with the bar, at the intersection in the flat surface of the support. The conclusions obtained have established which variables affect the execution of the anchors and in what quantity. They have also permitted to determine the difference between the anchors in vibrated concrete and selfcompacting concrete with very interesting results that also allow to assess the influence of these mentioned variables. Three groups are highlighted among the conclusions called high influence, low influence and no influence. In every case is necessary to perform the study in terms of loading and movement. In terms of loading, there are considered as high influence two variables: drilling machinery and anchorage material. In terms of movement, there are considered as high influence the drilling diameter and the cleaning and moisture of the support, besides the drilling machinery and the anchorage material. Variables such as type of concrete, drilling direction and cleaning and moisture of the support are considered of low influence in terms of load. In terms of movement, the type of concrete and the direction of the drilling are considered variables of low influence. Within the no influence section in terms of loading, there are included the diameter of the drilling and the height of the drill. In terms of loading, the height of the drill is considered as a no influence variable. We can affirm that the differences among the loading values increase significantly in terms of movement.
Resumo:
En la actualidad el uso de adiciones activas en las dosificaciones de morteros y hormigones es una práctica ampliamente extendida. En este trabajo de investigación se estudiaron morteros con incorporación de nanosílice que nos permitiesen ampliar las perspectivas de uso de este tipo de material. Como objetivo último se trataría de extrapolar el comportamiento de este material a microhormigones. Dentro de las posibilidades de uso que se proponían para este nuevo material se podrían encontrar la fabricación de losas de pavimento, la puesta en obra en continuo, el uso en elementos decorativos y funcionales de bajo coste, expuestos a ambientes moderados de abrasión, etc. En las dosificaciones ensayadas se determinó el comportamiento mecánico del material, mediante La determinación de las resistencias a compresión y flexión, y la determinación de la energía de fractura del material, a 7, 28 y 90 días. Se evaluó la dureza superficial antes y después de un proceso de carbonatación acelerada. Se realizaron medidas del desgaste del material por choque usando el ensayo de Los Ángeles. Los resultados obtenidos indican que el material propuesto presenta una dureza superficial similar al de rocas naturales después del proceso de carbonatación de las muestras. Existe cierta relación entre la adherencia que presenta el material (determinado a partir del coeficiente de Los Ángeles) y la tenacidad del material (evaluada a través de la determinación de la energía de fractura).
Resumo:
El laboreo de conservación requiere el diseño de herramientas de labranza que cumplan criterios de calidad de la labor, resistencia al desgaste y reducción del consumo energético (debido fundamentalmente a la adherencia suelo/herramienta). La biomimética es la ciencia que refiere al estudio de la estructura y la función de los sistemas biológicos como modelos para el diseño y fabricación de materiales y máquinas, en un proceso de ingeniería inversa en que el ser humano saca provecho de los procesos evolutivos de la naturaleza. En este trabajo de revisión, 1998-2013, se describen las respuestas adaptativas de diversos seres vivos al problema de la adherencia, y se analiza el caso concreto de optimización de una vertedera, un brazo de subsolador y un disco de corte empleando modelos numéricos y criterios biomiméticos. En todos los casos las etapas llevadas a cabo por distintos investigadores son: formulación del modelo de elementos finitos del apero, para posteriormente (en función de las condiciones de contorno) y de propiedades del suelo, obtener los resultados de la simulación. Por último se verifica experimentalmente con datos reales (sólo en dos de los tres ejemplos). Como resultado, comprobamos que en el caso del disco de corte la tensión total que soporta el material se reduce en un 34% con un diseño optimizado, mientras que en el caso del subsolador biomimético la resistencia horizontal y vertical se reducen en un 7% y 24% respectivamente.
Resumo:
La corrosión del acero es una de las patologías más importantes que afectan a las estructuras de hormigón armado que están expuestas a ambientes marinos o al ataque de sales fundentes. Cuando se produce corrosión, se genera una capa de óxido alrededor de la superficie de las armaduras, que ocupa un volumen mayor que el acero inicial; como consecuencia, el óxido ejerce presiones internas en el hormigón circundante, que lleva a la fisuración y, ocasionalmente, al desprendimiento del recubrimiento de hormigón. Durante los últimos años, numerosos estudios han contribuido a ampliar el conocimiento sobre el proceso de fisuración; sin embargo, aún existen muchas incertidumbres respecto al comportamiento mecánico de la capa de óxido, que es fundamental para predecir la fisuración. Por ello, en esta tesis se ha desarrollado y aplicado una metodología, para mejorar el conocimiento respecto al comportamiento del sistema acero-óxido-hormigón, combinando experimentos y simulaciones numéricas. Se han realizado ensayos de corrosión acelerada en condiciones de laboratorio, utilizando la técnica de corriente impresa. Con el objetivo de obtener información cercana a la capa de acero, como muestras se seleccionaron prismas de hormigón con un tubo de acero liso como armadura, que se diseñaron para conseguir la formación de una única fisura principal en el recubrimiento. Durante los ensayos, las muestras se equiparon con instrumentos especialmente diseñados para medir la variación de diámetro y volumen interior de los tubos, y se midió la apertura de la fisura principal utilizando un extensómetro comercial, adaptado a la geometría de las muestras. Las condiciones de contorno se diseñaron cuidadosamente para que los campos de corriente y deformación fuesen planos durante los ensayos, resultando en corrosión uniforme a lo largo del tubo, para poder reproducir los ensayos en simulaciones numéricas. Se ensayaron series con varias densidades de corriente y varias profundidades de corrosión. De manera complementaria, el comportamiento en fractura del hormigón se caracterizó en ensayos independientes, y se midió la pérdida gravimétrica de los tubos siguiendo procedimientos estándar. En todos los ensayos, la fisura principal creció muy despacio durante las primeras micras de profundidad de corrosión, pero después de una cierta profundidad crítica, la fisura se desarrolló completamente, con un aumento rápido de su apertura; la densidad de corriente influye en la profundidad de corrosión crítica. Las variaciones de diámetro interior y de volumen interior de los tubos mostraron tendencias diferentes entre sí, lo que indica que la deformación del tubo no fue uniforme. Después de la corrosión acelerada, las muestras se cortaron en rebanadas, que se utilizaron en ensayos post-corrosión. El patrón de fisuración se estudió a lo largo del tubo, en rebanadas que se impregnaron en vacío con resina y fluoresceína para mejorar la visibilidad de las fisuras bajo luz ultravioleta, y se estudió la presencia de óxido dentro de las grietas. En todas las muestras, se formó una fisura principal en el recubrimiento, infiltrada con óxido, y varias fisuras secundarias finas alrededor del tubo; el número de fisuras varió con la profundidad de corrosión de las muestras. Para muestras con la misma corrosión, el número de fisuras y su posición fue diferente entre muestras y entre secciones de una misma muestra, debido a la heterogeneidad del hormigón. Finalmente, se investigó la adherencia entre el acero y el hormigón, utilizando un dispositivo diseñado para empujar el tubo en el hormigón. Las curvas de tensión frente a desplazamiento del tubo presentaron un pico marcado, seguido de un descenso constante; la profundidad de corrosión y la apertura de fisura de las muestras influyeron notablemente en la tensión residual del ensayo. Para simular la fisuración del hormigón causada por la corrosión de las armaduras, se programó un modelo numérico. Éste combina elementos finitos con fisura embebida adaptable que reproducen la fractura del hormigón conforme al modelo de fisura cohesiva estándar, y elementos de interfaz llamados elementos junta expansiva, que se programaron específicamente para reproducir la expansión volumétrica del óxido y que incorporan su comportamiento mecánico. En el elemento junta expansiva se implementó un fenómeno de despegue, concretamente de deslizamiento y separación, que resultó fundamental para obtener localización de fisuras adecuada, y que se consiguió con una fuerte reducción de la rigidez tangencial y la rigidez en tracción del óxido. Con este modelo, se realizaron simulaciones de los ensayos, utilizando modelos bidimensionales de las muestras con elementos finitos. Como datos para el comportamiento en fractura del hormigón, se utilizaron las propiedades determinadas en experimentos. Para el óxido, inicialmente se supuso un comportamiento fluido, con deslizamiento y separación casi perfectos. Después, se realizó un ajuste de los parámetros del elemento junta expansiva para reproducir los resultados experimentales. Se observó que variaciones en la rigidez normal del óxido apenas afectaban a los resultados, y que los demás parámetros apenas afectaban a la apertura de fisura; sin embargo, la deformación del tubo resultó ser muy sensible a variaciones en los parámetros del óxido, debido a la flexibilidad de la pared de los tubos, lo que resultó fundamental para determinar indirectamente los valores de los parámetros constitutivos del óxido. Finalmente, se realizaron simulaciones definitivas de los ensayos. El modelo reprodujo la profundidad de corrosión crítica y el comportamiento final de las curvas experimentales; se comprobó que la variación de diámetro interior de los tubos está fuertemente influenciada por su posición relativa respecto a la fisura principal, en concordancia con los resultados experimentales. De la comparación de los resultados experimentales y numéricos, se pudo extraer información sobre las propiedades del óxido que de otra manera no habría podido obtenerse. Corrosion of steel is one of the main pathologies affecting reinforced concrete structures exposed to marine environments or to molten salt. When corrosion occurs, an oxide layer develops around the reinforcement surface, which occupies a greater volume than the initial steel; thus, it induces internal pressure on the surrounding concrete that leads to cracking and, eventually, to full-spalling of the concrete cover. During the last years much effort has been devoted to understand the process of cracking; however, there is still a lack of knowledge regarding the mechanical behavior of the oxide layer, which is essential in the prediction of cracking. Thus, a methodology has been developed and applied in this thesis to gain further understanding of the behavior of the steel-oxide-concrete system, combining experiments and numerical simulations. Accelerated corrosion tests were carried out in laboratory conditions, using the impressed current technique. To get experimental information close to the oxide layer, concrete prisms with a smooth steel tube as reinforcement were selected as specimens, which were designed to get a single main crack across the cover. During the tests, the specimens were equipped with instruments that were specially designed to measure the variation of inner diameter and volume of the tubes, and the width of the main crack was recorded using a commercial extensometer that was adapted to the geometry of the specimens. The boundary conditions were carefully designed so that plane current and strain fields were expected during the tests, resulting in nearly uniform corrosion along the length of the tube, so that the tests could be reproduced in numerical simulations. Series of tests were carried out with various current densities and corrosion depths. Complementarily, the fracture behavior of concrete was characterized in independent tests, and the gravimetric loss of the steel tubes was determined by standard means. In all the tests, the main crack grew very slowly during the first microns of corrosion depth, but after a critical corrosion depth it fully developed and opened faster; the current density influenced the critical corrosion depth. The variation of inner diameter and inner volume of the tubes had different trends, which indicates that the deformation of the tube was not uniform. After accelerated corrosion, the specimens were cut into slices, which were used in post-corrosion tests. The pattern of cracking along the reinforcement was investigated in slices that were impregnated under vacuum with resin containing fluorescein to enhance the visibility of cracks under ultraviolet lightening and a study was carried out to assess the presence of oxide into the cracks. In all the specimens, a main crack developed through the concrete cover, which was infiltrated with oxide, and several thin secondary cracks around the reinforcement; the number of cracks diminished with the corrosion depth of the specimen. For specimens with the same corrosion, the number of cracks and their position varied from one specimen to another and between cross-sections of a given specimen, due to the heterogeneity of concrete. Finally, the bond between the steel and the concrete was investigated, using a device designed to push the tubes of steel in the concrete. The curves of stress versus displacement of the tube presented a marked peak, followed by a steady descent, with notably influence of the corrosion depth and the crack width on the residual stress. To simulate cracking of concrete due to corrosion of the reinforcement, a numerical model was implemented. It combines finite elements with an embedded adaptable crack that reproduces cracking of concrete according to the basic cohesive model, and interface elements so-called expansive joint elements, which were specially designed to reproduce the volumetric expansion of oxide and incorporate its mechanical behavior. In the expansive joint element, a debonding effect was implemented consisting of sliding and separation, which was proved to be essential to achieve proper localization of cracks, and was achieved by strongly reducing the shear and the tensile stiffnesses of the oxide. With that model, simulations of the accelerated corrosion tests were carried out on 2- dimensional finite element models of the specimens. For the fracture behavior of concrete, the properties experimentally determined were used as input. For the oxide, initially a fluidlike behavior was assumed with nearly perfect sliding and separation; then the parameters of the expansive joint element were modified to fit the experimental results. Changes in the bulk modulus of the oxide barely affected the results and changes in the remaining parameters had a moderate effect on the predicted crack width; however, the deformation of the tube was very sensitive to variations in the parameters of oxide, due to the flexibility of the tube wall, which was crucial for indirect determination of the constitutive parameters of oxide. Finally, definitive simulations of the tests were carried out. The model reproduced the critical corrosion depth and the final behavior of the experimental curves; it was assessed that the variation of inner diameter of the tubes is highly influenced by its relative position with respect to the main crack, in accordance with the experimental observations. From the comparison of the experimental and numerical results, some properties of the mechanical behavior of the oxide were disclosed that otherwise could not have been measured.
Resumo:
El auge que ha surgido en los últimos años por la reparación de edificios y estructuras construidas con hormigón ha llevado al desarrollo de morteros de reparación cada vez más tecnológicos. En el desarrollo de estos morteros por parte de los fabricantes, surge la disyuntiva en el uso de los polímeros en sus formulaciones, por no encontrarse justificado en ocasiones el trinomio prestaciones/precio/aplicación. En esta tesis se ha realizado un estudio exhaustivo para la justificación de la utilización de estos morteros como morteros de reparación estructural como respuesta a la demanda actual disponiéndolo en tres partes: En la primera parte se realizó un estudio del arte de los morteros y sus constituyentes. El uso de los morteros se remonta a la antigüedad, utilizándose como componentes yeso y cal fundamentalmente. Los griegos y romanos desarrollaron el concepto de morteros de cal, introduciendo componentes como las puzolanas, cales hidraúlicas y áridos de polvo de mármol dando origen a morteros muy parecidos a los hormigones actuales. En la edad media y renacimiento se perdió la tecnología desarrollada por los romanos debido al extenso uso de la piedra en las construcciones civiles, defensivas y religiosas. Hubo que esperar hasta el siglo XIX para que J. Aspdin descubriese el actual cemento como el principal compuesto hidraúlico. Por último y ya en el siglo XX con la aparición de moléculas tales como estireno, melanina, cloruro de vinilo y poliésteres se comenzó a desarrollar la industria de los polímeros que se añadieron a los morteros dando lugar a los “composites”. El uso de polímeros en matrices cementantes dotan al mortero de propiedades tales como: adherencia, flexibilidad y trabajabilidad, como ya se tiene constancia desde los años 30 con el uso de caucho naturales. En la actualidad el uso de polímeros de síntesis (polivinialacetato, estireno-butadieno, viniacrílico y resinas epoxi) hacen que principalmente el mortero tenga mayor resistencia al ataque del agua y por lo tanto aumente su durabilidad ya que se minimizan todas las reacciones de deterioro (hielo, humedad, ataque biológico,…). En el presente estudio el polímero que se utilizó fue en estado polvo: polímero redispersable. Estos polímeros están encapsulados y cuando se ponen en contacto con el agua se liberan de la cápsula formando de nuevo el gel. En los morteros de reparación el único compuesto hidraúlico que hay es el cemento y es el principal constituyente hoy en día de los materiales de construcción. El cemento se obtiene por molienda conjunta de Clínker y yeso. El Clínker se obtiene por cocción de una mezcla de arcillas y calizas hasta una temperatura de 1450-1500º C por reacción en estado fundente. Para esta reacción se deben premachacar y homogeneizar las materias primas extraídas de la cantera. Son dosificadas en el horno con unas proporciones tales que cumplan con unas relación de óxidos tales que permitan formar las fases anhidras del Clínker C3S, C2S, C3A y C4AF. De la hidratación de las fases se obtiene el gel CSH que es el que proporciona al cemento de sus propiedades. Existe una norma (UNE-EN 197-1) que establece la composición, especificaciones y tipos de cementos que se fabrican en España. La tendencia actual en la fabricación del cemento pasa por el uso de cementos con mayores contenidos de adiciones (cal, puzolana, cenizas volantes, humo de sílice,…) con el objeto de obtener cementos más sostenibles. Otros componentes que influyen en las características de los morteros son: - Áridos. En el desarrollo de los morteros se suelen usar naturales, bien calizos o silícicos. Hacen la función de relleno y de cohesionantes de la matriz cementante. Deben ser inertes - Aditivos. Son aquellos componentes del mortero que son dosificados en una proporción menor al 5%. Los más usados son los superplastificantes por su acción de reductores de agua que revierte en una mayor durabilidad del mortero. Una vez analizada la composición de los morteros, la mejora tecnológica de los mismos está orientada al aumento de la durabilidad de su vida en obra. La durabilidad se define como la capacidad que éste tiene de resistir a la acción del ambiente, ataques químicos, físicos, biológicos o cualquier proceso que tienda a su destrucción. Estos procesos dependen de factores tales como la porosidad del hormigón y de la exposición al ambiente. En cuanto a la porosidad hay que tener en cuenta la distribución de macroporos, mesoporos y microporos de la estructura del hormigón, ya que no todos son susceptibles de que se produzca el transporte de agentes deteriorantes, provocando tensiones internas en las paredes de los mismos y destruyendo la matriz cementante Por otro lado los procesos de deterioro están relacionados con la acción del agua bien como agente directo o como vehículo de transporte del agente deteriorante. Un ambiente que resulta muy agresivo para los hormigones es el marino. En este caso los procesos de deterioro están relacionados con la presencia de cloruros y de sulfatos tanto en el agua de mar como en la atmosfera que en combinación con el CO2 y O2 forman la sal de Friedel. El deterioro de las estructuras en ambientes marinos se produce por la debilitación de la matriz cementante y posterior corrosión de las armaduras que provocan un aumento de volumen en el interior y rotura de la matriz cementante por tensiones capilares. Otras reacciones que pueden producir estos efectos son árido-álcali y difusión de iones cloruro. La durabilidad de un hormigón también depende del tipo de cemento y su composición química (cementos con altos contenidos de adición son más resistentes), relación agua/cemento y contenido de cemento. La Norma UNE-EN 1504 que consta de 10 partes, define los productos para la protección y reparación de estructuras de hormigón, el control de calidad de los productos, propiedades físico-químicas y durables que deben cumplir. En esta Norma se referencian otras 65 normas que ofrecen los métodos de ensayo para la evaluación de los sistemas de reparación. En la segunda parte de esta Tesis se hizo un diseño de experimentos con diferentes morteros poliméricos (con concentraciones de polímero entre 0 y 25%), tomando como referencia un mortero control sin polímero, y se estudiaron sus propiedades físico-químicas, mecánicas y durables. Para mortero con baja proporción de polímero se recurre a sistemas monocomponentes y para concentraciones altas bicomponentes en la que el polímero está en dispersión acuosa. Las propiedades mecánicas medidas fueron: resistencia a compresión, resistencia a flexión, módulo de elasticidad, adherencia por tracción directa y expansión-retracción, todas ellas bajo normas UNE. Como ensayos de caracterización de la durabilidad: absorción capilar, resistencia a carbonatación y adherencia a tracción después de ciclos hielo-deshielo. El objeto de este estudio es seleccionar el mortero con mejor resultado general para posteriormente hacer una comparativa entre un mortero con polímero (cantidad optimizada) y un mortero sin polímero. Para seleccionar esa cantidad óptima de polímero a usar se han tenido en cuenta los siguientes criterios: el mortero debe tener una clasificación R4 en cuanto a prestaciones mecánicas al igual que para evaluar sus propiedades durables frente a los ciclos realizados, siempre teniendo en cuenta que la adición de polímero no puede ser elevada para hacer el mortero competitivo. De este estudio se obtuvieron las siguientes conclusiones generales: - Un mortero normalizado no cumple con propiedades para ser clasificado como R3 o R4. - Sin necesidad de polímero se puede obtener un mortero que cumpliría con R4 para gran parte de las características medidas - Es necesario usar relaciones a:c< 0.5 para conseguir morteros R4, - La adición de polímero mejora siempre la adherencia, abrasión, absorción capilar y resistencia a carbonatación - Las diferentes proporciones de polímero usadas siempre suponen una mejora tecnológica en propiedades mecánicas y de durabilidad. - El polímero no influye sobre la expansión y retracción del mortero. - La adherencia se mejora notablemente con el uso del polímero. - La presencia de polímero en los morteros mejoran las propiedades relacionadas con la acción del agua, por aumento del poder cementante y por lo tanto de la cohesión. El poder cementante disminuye la porosidad. Como consecuencia final de este estudio se determinó que la cantidad óptima de polímero para la segunda parte del estudio es 2.0-3.5%. La tercera parte consistió en el estudio comparativo de dos morteros: uno sin polímero (mortero A) y otro con la cantidad optimizada de polímero, concluida en la parte anterior (mortero B). Una vez definido el porcentaje de polímeros que mejor se adapta a los resultados, se plantea un nuevo esqueleto granular mejorado, tomando una nueva dosificación de tamaños de áridos, tanto para el mortero de referencia, como para el mortero con polímeros, y se procede a realizar los ensayos para su caracterización física, microestructural y de durabilidad, realizándose, además de los ensayos de la parte 1, mediciones de las propiedades microestructurales que se estudiaron a través de las técnicas de porosimetría de mercurio y microscopia electrónica de barrido (SEM); así como propiedades del mortero en estado fresco (consistencia, contenido de aire ocluido y tiempo final de fraguado). El uso del polímero frente a la no incorporación en la formulación del mortero, proporcionó al mismo de las siguientes ventajas: - Respecto a sus propiedades en estado fresco: El mortero B presentó mayor consistencia y menor cantidad de aire ocluido lo cual hace un mortero más trabajable y más dúctil al igual que más resistente porque al endurecer dejará menos huecos en su estructura interna y aumentará su durabilidad. Al tener también mayor tiempo de fraguado, pero no excesivo permite que la manejabilidad para puesta en obra sea mayor, - Respecto a sus propiedades mecánicas: Destacar la mejora en la adherencia. Es una de las principales propiedades que confiere el polímero a los morteros. Esta mayor adherencia revierte en una mejora de la adherencia al soporte, minimización de las posibles reacciones en la interfase hormigón-mortero y por lo tanto un aumento en la durabilidad de la reparación ejecutada con el mortero y por consecuencia del hormigón. - Respecto a propiedades microestructurales: la porosidad del mortero con polímero es menor y menor tamaño de poro critico susceptible de ser atacado por agentes externos causantes de deterioro. De los datos obtenidos por SEM no se observaron grandes diferencias - En cuanto a abrasión y absorción capilar el mortero B presentó mejor comportamiento como consecuencia de su menor porosidad y su estructura microscópica. - Por último el comportamiento frente al ataque de sulfatos y agua de mar, así como al frente de carbonatación, fue más resistente en el mortero con polímero por su menor permeabilidad y su menor porosidad. Para completar el estudio de esta tesis, y debido a la gran importancia que están tomando en la actualidad factores como la sostenibilidad se ha realizado un análisis de ciclo de vida de los dos morteros objeto de estudio de la segunda parte experimental.In recent years, the extended use of repair materials for buildings and structures made the development of repair mortars more and more technical. In the development of these mortars by producers, the use of polymers in the formulations is a key point, because sometimes this use is not justified when looking to the performance/price/application as a whole. This thesis is an exhaustive study to justify the use of these mortars as a response to the current growing demand for structural repair. The thesis is classified in three parts:The first part is the study of the state of the art of mortars and their constituents.In ancient times, widely used mortars were based on lime and gypsum. The Greeks and Romans developed the concept of lime mortars, introducing components such as pozzolans, hydraulic limes and marble dust as aggregates, giving very similar concrete mortars to the ones used currently. In the middle Age and Renaissance, the technology developed by the Romans was lost, due to the extensive use of stone in the civil, religious and defensive constructions. It was not until the 19th century, when J. Aspdin discovered the current cement as the main hydraulic compound. Finally in the 20th century, with the appearance of molecules such as styrene, melanin, vinyl chloride and polyester, the industry began to develop polymers which were added to the binder to form special "composites".The use of polymers in cementitious matrixes give properties to the mortar such as adhesion, Currently, the result of the polymer synthesis (polivynilacetate, styrene-butadiene, vynilacrylic and epoxy resins) is that mortars have increased resistance to water attack and therefore, they increase their durability since all reactions of deterioration are minimised (ice, humidity, biological attack,...). In the present study the polymer used was redispersible polymer powder. These polymers are encapsulated and when in contact with water, they are released from the capsule forming a gel.In the repair mortars, the only hydraulic compound is the cement and nowadays, this is the main constituent of building materials. The current trend is centered in the use of higher contents of additions (lime, pozzolana, fly ash, silica, silica fume...) in order to obtain more sustainable cements. Once the composition of mortars is analyzed, the technological improvement is centred in increasing the durability of the working life. Durability is defined as the ability to resist the action of the environment, chemical, physical, and biological attacks or any process that tends to its destruction. These processes depend on factors such as the concrete porosity and the environmental exposure. In terms of porosity, it be considered, the distribution of Macropores and mesopores and pores of the concrete structure, since not all of them are capable of causing the transportation of damaging agents, causing internal stresses on the same walls and destroying the cementing matrix.In general, deterioration processes are related to the action of water, either as direct agent or as a transport vehicle. Concrete durability also depends on the type of cement and its chemical composition (cement with high addition amounts are more resistant), water/cement ratio and cement content. The standard UNE-EN 1504 consists of 10 parts and defines the products for the protection and repair of concrete, the quality control of products, physical-chemical properties and durability. Other 65 standards that provide the test methods for the evaluation of repair systems are referenced in this standard. In the second part of this thesis there is a design of experiments with different polymer mortars (with concentrations of polymer between 0 and 25%), taking a control mortar without polymer as a reference and its physico-chemical, mechanical and durable properties were studied. For mortars with low proportion of polymer, 1 component systems are used (powder polymer) and for high polymer concentrations, water dispersion polymers are used. The mechanical properties measured were: compressive strength, flexural strength, modulus of elasticity, adhesion by direct traction and expansion-shrinkage, all of them under standards UNE. As a characterization of the durability, following tests are carried out: capillary absorption, resistance to carbonation and pull out adhesion after freeze-thaw cycles. The target of this study is to select the best mortar to make a comparison between mortars with polymer (optimized amount) and mortars without polymer. To select the optimum amount of polymer the following criteria have been considered: the mortar must have a classification R4 in terms of mechanical performance as well as in durability properties against the performed cycles, always bearing in mind that the addition of polymer cannot be too high to make the mortar competitive in price. The following general conclusions were obtained from this study: - A standard mortar does not fulfill the properties to be classified as R3 or R4 - Without polymer, a mortar may fulfill R4 for most of the measured characteristics. - It is necessary to use relations w/c ratio < 0.5 to get R4 mortars - The addition of polymer always improves adhesion, abrasion, capillary absorption and carbonation resistance - The different proportions of polymer used always improve the mechanical properties and durability. - The polymer has no influence on the expansion and shrinkage of the mortar - Adhesion is improved significantly with the use of polymer. - The presence of polymer in mortars improves the properties related to the action of the water, by the increase of the cement power and therefore the cohesion. The cementitious properties decrease the porosity. As final result of this study, it was determined that the optimum amount of polymer for the second part of the study is 2.0 - 3.5%. The third part is the comparative study between two mortars: one without polymer (A mortar) and another with the optimized amount of polymer, completed in the previous part (mortar B). Once the percentage of polymer is defined, a new granular skeleton is defined, with a new dosing of aggregate sizes, for both the reference mortar, the mortar with polymers, and the tests for physical, microstructural characterization and durability, are performed, as well as trials of part 1, measurements of the microstructural properties that were studied by scanning electron microscopy (SEM) and mercury porosimetry techniques; as well as properties of the mortar in fresh State (consistency, content of entrained air and final setting time). The use of polymer versus non polymer mortar, provided the following advantages: - In fresh state: mortar with polymer presented higher consistency and least amount of entrained air, which makes a mortar more workable and more ductile as well as more resistant because hardening will leave fewer gaps in its internal structure and increase its durability. Also allow it allows a better workability because of the longer (not excessive) setting time. - Regarding the mechanical properties: improvement in adhesion. It is one of the main properties which give the polymer to mortars. This higher adhesion results in an improvement of adhesion to the substrate, minimization of possible reactions at the concrete-mortar interface and therefore an increase in the durability of the repair carried out with mortar and concrete. - Respect to microstructural properties: the porosity of mortar with polymer is less and with smaller pore size, critical to be attacked by external agents causing deterioration. No major differences were observed from the data obtained by SEM - In terms of abrasion and capillary absorption, polymer mortar presented better performance as a result of its lower porosity and its microscopic structure. - Finally behavior against attack by sulfates and seawater, as well as to carbonation, was better in the mortar with polymer because of its lower permeability and its lower porosity. To complete the study, due to the great importance of sustainability for future market facts, the life cycle of the two mortars studied was analysed.
Resumo:
El objetivo de este trabajo es conocer las posibles modificaciones que puede producir en el comportamiento de las estructuras de hormigón armado (EHA) el hecho de que sean utilizadas como estructuras termoactivas, ya sea como intercambiadores en contacto con el terreno, o como sistema de distribución de calor utilizando la inercia térmica de los elementos de hormigón del edificio, basándose en el uso de energías renovables. Las EHA termoactivas se caracterizan por la incorporación en su interior de tubos de polietileno por los que circulan fluidos a temperaturas medias, que pueden incidir en el comportamiento mecánico de los elementos estructurales debido a dos efectos fundamentales: el incremento de temperatura que se produce en el interior de la EHA y la perturbación provocada por la incorporación de los tubos de polietileno. Con este fin, se ha realizado una campaña experimental de probetas de hormigón, estudiando los dos efectos por separado, por un lado se ha evaluado el comportamiento de probetas de hormigón tipo H-25 y tipo H-30 sometidas a cuatro temperaturas diferentes: 20ºC, 40ºC, 70ºC y 100ºC, ensayando la resistencia a compresión y la resistencia a anclaje/adherencia mediante ensayo “pull-out”; y, por otro lado, se ha evaluado el comportamiento de probetas de hormigón tipo H-25 y tipo H-30, elaboradas con dos tipos de molde (cilíndrico y cúbico), en las que se ha colocado tubos de polietileno en su interior en distintas posiciones, ensayando su resistencia a compresión. Los resultados de los ensayos han puesto de manifiesto que aunque se produce una disminución en la resistencia a compresión, y a arrancamiento, del hormigón, al ser sometido a aumentos de temperatura, esta disminución de la propiedades mecánicas es inferior al 20% al no superar esta tecnología los 70ºC; y respecto a la variación de la resistencia a compresión de probetas cilíndricas y cúbicas, debidas a la incorporación de los tubos de polietileno, se observa que si la posición de los mismos es paralela a la dirección de la carga tampoco se ven comprometidas las propiedad mecánicas del hormigón en valores superiores al 20%. ABSTRACT The aim of this project is to study the effects of using concrete structures as thermo-active constructions, either as energy foundations or other kind of thermo-active ground structures, or as a thermally activated building structure utilizing its own thermal mass conductivity and storage capacity to heat and cool buildings, based on renewable or “free” energy sources. The pipes, filled with a heat carrier fluid, that are embedded into the building´s concrete elements may bring on two different adverse effects on concrete structures. In one hand, the consequence of thermal variations and, on the other hand, because of the fact that the pipes are inside of the concrete mortar and in direct contact with the reinforcing steel bars. For this reason, different types of specimens and testing procedures have been proposed to discuss the effects of temperature (20º, 40ºC, 70ºC y 100ºC) on the performance of two different hardened concrete: H-25 and H-30, and the effects of having the pipes embedded in different positions inside of specimens made of two types of concrete, H-25 and H-30, and with two kind of cast, cylindrical and cubical. The experimental program includes the use of compressive strength test and also pull-out test, in order to investigate the interfacial adhesion quality and interfacial properties between steel bar and concrete. The results of the mechanical test showed that the increase of temperature in hardened concrete specimens lower than 70ºC, and the introduction of embedded pipes placed in parallel to the load, in cylindrical or cubic specimens, does not jeopardize the mechanical properties of concrete with strength decreases higher than 20%.
Resumo:
En este proyecto de final de carrera se detalla el proceso de diseño, fabricación, montaje y ajuste de un dispositivo electrónico que sirva como sistema de control de tracción de un vehículo y que acoplaremos sobre un monoplaza de carreras que participa en la competición Formula SAE. La Formula SAE (Society of Automotive Engineers - Sociedad de Ingenieros de Automoción), es una competición de coches de carreras monoplaza a nivel universitario que promueve el desarrollo de la ingeniera aplicada a la automoción. Se pretende que este libro sirva de guía para el correcto manejo y desempeño del sistema fabricado. Además se ha pretendido que su lectura resulte fácil y comprensible para que la persona que lea este libro sea capaz de entender el sistema realizado para así poderlo mejorar. Gracias a la colaboración entre la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST) de la Universidad Politécnica de Madrid (UPM), la Escuela de Ingenieros Industriales de esta misma Universidad (ETSII) y el Instituto Universitario de Investigación del Automóvil (INSIA), se sientan las bases de una plataforma docente en la cual se posibilita la formación y desarrollo de un vehículo tipo formula que participa en la ya mencionada competición Formula SAE. Para ello, se formo en el 2003 el equipo UPMRacing, primer representante español en el evento. El equipo se compone de más de 50 alumnos de la UPM y del Máster de Ingeniería en Automoción del INSIA. Es por tanto, en el vehículo fabricado por el equipo UPMRacing, en el que se pretende instalar este sistema de control de tracción. El control de tracción es un sistema de seguridad del automóvil diseñado para prevenir la perdida de adherencia cuando alguna rueda presenta deslizamiento, bien porque el conductor se excede en la aceleración o bien porque el firme este resbaladizo. La unidad de procesamiento del sistema de control de tracción fabricado lee la velocidad de cada rueda del vehículo mediante unos sensores y determina si existe deslizamiento, en tal caso, manda una señal a la centralita para disminuir la potencia hasta que el deslizamiento disminuya a unos valores controlados. El sistema cuenta con un control remoto que sirve como interfaz para que el piloto pueda manejarlo. Por ultimo, el dispositivo es capaz de conectarse a un bus de comunicaciones CAN para configurar ciertos parámetros. El objetivo del sistema es, básicamente, hacer que el coche no derrape en aceleraciones fuertes; concretamente en las salidas desde parado y al tomar una curva, aumentando así la velocidad en circuito y la seguridad del piloto. ABSTRACT. The purpose of this project is to describe the design, manufacture, assembly and adjustment processes of an electronic device acting as the traction control system (TCS) of a vehicle, that we will attach to a single-seater competition formula SAE car. The Formula SAE (Society of Automotive Engineers) is a graduate-level singleseater racing car competition promoting the development of automotive applied engineering. We also intend this work to serve as a technical user guide of the manufactured system. It is drafted clearly and concisely so that it will be easy for all those to whom it is addressed to understand and subject to further improvements. The close partnership among the Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Escuela de Ingenieros Industriales (ETSII) of Universidad Politécnica de Madrid (UPM), and the Instituto Universitario de Investigación del Automóvil (INSIA), lays the foundation of a teaching platform enabling the training and development of a single-seater racing car taking part in the already mentioned Formula SAE competition. In this respect, UPMRacing team was created back in 2003, first spanish representative in this event. The team consists of more than 50 students of the UPM and of INSIA Master in Automotive Engineering. It is precisely the vehicle manufactured by UPMRacing team where we intend to install our TCS. TCS is an automotive safety system designed to prevent loss of traction when one wheel has slip, either because the driver exceeds the acceleration or because the firm is slippery. The device’s central processing unit is able to detect the speed of each wheel of the vehicle via special sensors and to determine wheel slip. If this is the case, the system sends a signal to the ECU of the vehicle to reduce the power until the slip is also diminished to controlled values. The device has a remote control that serves as an interface for the pilot to handle it. Lastly, the device is able to connect to a communication bus system CAN to set up certain parameters. The system objective is to prevent skidding under strong acceleration conditions: standing-start from the starting grid or driving into a curve, increasing the speed in circuit and pilot’s safety.
A simplified spectral approachfor impedance-based damage identification of frp-strengthened rc beams
Resumo:
Hoy en día, el refuerzo y reparación de estructuras de hormigón armado mediante el pegado de bandas de polímeros reforzados con fibras (FRP) se emplea cada vez con más frecuencia a causa de sus numerosas ventajas. Sin embargo, las vigas reforzadas con esta técnica pueden experimentar un modo de fallo frágil a causa del despegue repentino de la banda de FRP a partir de una fisura intermedia. A pesar de su importancia, el número de trabajos que abordan el estudio de este mecanismo de fallo y su monitorización es muy limitado. Por ello, el desarrollo de metodologías capaces de monitorizar a largo plazo la adherencia de este refuerzo a las estructuras de hormigón e identificar cuándo se inicia el despegue de la banda constituyen un importante desafío a abordar. El principal objetivo de esta tesis es la implementación de una metodología fiable y efectiva, capaz de detectar el despegue de una banda de FRP en una viga de hormigón armado a partir de una fisura intermedia. Para alcanzar este objetivo se ha implementado un procedimiento de calibración numérica a partir de ensayos experimentales. Para ello, en primer lugar, se ha desarrollado un modelo numérico unidimensional simple y no costoso representativo del comportamiento de este tipo vigas de hormigón reforzadas con FRP, basado en un modelo de fisura discreta para el hormigón y el método de elementos espectrales. La formación progresiva de fisuras a flexion y el consiguiente despegue en la interface entre el hormigón y el FRP se formulan mediante la introducción de un nuevo elemento capaz de representar ambos fenómenos simultáneamente sin afectar al procedimiento numérico. Además, con el modelo propuesto, se puede obtener de una forma sencilla la respuesta dinámica en altas frecuencias de este tipo de estructuras, lo cual puede hacer muy útil su uso como herramienta de diagnosis y detección del despegue en su fase inicial mediante una monitorización de la variación de las características dinámicas locales de la estructura. Un método de evaluación no destructivo muy prometedor para la monitorización local de las estructuras es el método de la impedancia usando sensores-actuadores piezoeléctricos (PZT). La impedancia eléctrica de los sensores PZT se puede relacionar con la impedancia mecánica de las estructuras donde se encuentran adheridos Ya que la impedancia mecánica de una estructura se verá afectada por su deterioro, se pueden implementar indicadores de daño mediante una comparación del espectro de admitancia (inversa de la impedancia) a lo largo de distintas etapas durante el periodo de servicio de una estructura. Cualquier cambio en el espectro se podría interpretar como una variación en la integridad de la estructura. La impedancia eléctrica se mide a altas frecuencias con lo cual esta metodología debería ser muy sensible a la detección de estados de daño incipiente local, tal como se desea en la aplicación de este trabajo. Se ha implementado un elemento espectral PZT-FRP como extensión del modelo previamente desarrollado, con el objetivo de poder calcular numéricamente la impedancia eléctrica de sensores PZT adheridos a bandas de FRP sobre una viga de hormigón armado. El modelo, combinado con medidas experimentales captadas mediante sensores PZT, se implementa en el marco de una metodología de calibración de modelos para detectar cuantitativamente el despegue en la interfase entre una banda de FRP y una viga de hormigón. El procedimiento de optimización se resuelve empleando el método del enjambre cooperativo con un algoritmo bagging. Los resultados muestran una gran aproximación en la estimación del daño para el problema propuesto. Adicionalmente, se ha desarrollado también un método adaptativo para el mallado de elementos espectrales con el objetivo de localizar las zonas dañadas a partir de los resultados experimentales, el cual contribuye a aumentar la robustez y efectividad del método propuesto a la hora de identificar daños incipientes en su aparición inicial. Finalmente, se ha llevado a cabo un procedimiento de optimización multi-objetivo para detectar el despegue inicial en una viga de hormigón a escala real reforzada con FRP a partir de las impedancias captadas con una red de sensores PZT instrumentada a lo largo de la longitud de la viga. Cada sensor aporta los datos para definir cada una de las funciones objetivo que definen el procedimiento. Combinando el modelo previo de elementos espectrales con un algoritmo PSO multi-objetivo el procedimiento de detección de daño resultante proporciona resultados satisfactorios considerando la escala de la estructura y todas las incertidumbres características ligadas a este proceso. Los resultados obtenidos prueban la viabilidad y capacidad de los métodos antes mencionados y también su potencial en aplicaciones reales. Abstract Nowadays, the external bonding of fibre reinforced polymer (FRP) plates or sheets is increasingly used for the strengthening and retrofitting of reinforced concrete (RC) structures due to its numerous advantages. However, this kind of strengthening often leads to brittle failure modes being the most dominant failure mode the debonding induced by an intermediate crack (IC). In spite of its importance, the number of studies regarding the IC debonding mechanism and bond health monitoring is very limited. Methodologies able to monitor the long-term efficiency of bonding and successfully identify the initiation of FRP debonding constitute a challenge to be met. The main purpose of this thesisis the implementation of a reliable and effective methodology of damage identification able to detect intermediate crack debonding in FRP-strengthened RC beams. To achieve this goal, a model updating procedure based on numerical simulations and experimental tests has been implemented. For it, firstly, a simple and non-expensive one-dimensional model based on the discrete crack approach for concrete and the spectral element method has been developed. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics. One very promising active non-destructive evaluation method for local monitoring is impedance-based structural health monitoring(SHM)using piezoelectric ceramic (PZT) sensor-actuators. The electrical impedance of the PZT can be directly related to the mechanical impedance of the host structural component where the PZT transducers are attached. Since the structural mechanical impedance will be affected by the presence of structural damage, comparisons of admittance (inverse of impedance) spectra at various times during the service period of the structure can be used as damage indicator. Any change in the spectra might be an indication of a change in the structural integrity. The electrical impedance is measured at high frequencies with which this methodology appears to be very sensitive to incipient damage in structural systems as desired for our application. Abonded-PZT-FRP spectral beam element approach based on an extension of the previous discrete crack approach is implemented in the calculation of the electrical impedance of the PZT transducer bonded to the FRP plates of a RC beam. This approach in conjunction with the experimental measurements of PZT actuator-sensors mounted on the structure is used to present an updating methodology to quantitatively detect interfacial debonding between a FRP strip and the host RC structure. The updating procedure is solved by using an ensemble particle swarm optimization approach with abagging algorithm, and the results demonstrate a big improvement for the performance and accuracy of the damage detection in the proposed problem. Additionally, an adaptive strategy of spectral element mesh has been also developed to detect damage location with experimental results, which shows the robustness and effectiveness of the proposed method to identify initial and incipient damages at its early stage. Lastly, multi-objective optimization has been carried out to detect debonding damage in a real scale FRP-strengthened RC beam by using impedance signatures. A net of PZT sensors is distributed along the beam to construct impedance-based multiple objectives under gradually induced damage scenario. By combining the spectral element model presented previously and an ensemble multi-objective PSO algorithm, the implemented damage detection process yields satisfactory predictions considering the scale and uncertainties of the structure. The obtained results prove the feasibility and capability of the aforementioned methods and also their potentials in real engineering applications.