856 resultados para Adaptive Control
Resumo:
Processos de produção precisam ser avaliados continuamente para que funcionem de modo mais eficaz e eficiente possível. Um conjunto de ferramentas utilizado para tal finalidade é denominado controle estatístico de processos (CEP). Através de ferramentas do CEP, o monitoramento pode ser realizado periodicamente. A ferramenta mais importante do CEP é o gráfico de controle. Nesta tese, foca-se no monitoramento de uma variável resposta, por meio dos parâmetros ou coeficientes de um modelo de regressão linear simples. Propõe-se gráficos de controle χ2 adaptativos para o monitoramento dos coeficientes do modelo de regressão linear simples. Mais especificamente, são desenvolvidos sete gráficos de controle χ2 adaptativos para o monitoramento de perfis lineares, a saber: gráfico com tamanho de amostra variável; intervalo de amostragem variável; limites de controle e de advertência variáveis; tamanho de amostra e intervalo de amostragem variáveis; tamanho de amostra e limites variáveis; intervalo de amostragem e limites variáveis e por fim, com todos os parâmetros de projeto variáveis. Medidas de desempenho dos gráficos propostos foram obtidas através de propriedades de cadeia de Markov, tanto para a situação zero-state como para a steady-state, verificando-se uma diminuição do tempo médio até um sinal no caso de desvios pequenos a moderados nos coeficientes do modelo de regressão do processo de produção. Os gráficos propostos foram aplicados a um exemplo de um processo de fabricação de semicondutores. Além disso, uma análise de sensibilidade dos mesmos é feita em função de desvios de diferentes magnitudes nos parâmetros do processo, a saber, no intercepto e na inclinação, comparando-se o desempenho entre os gráficos desenvolvidos e também com o gráfico χ2 com parâmetros fixos. Os gráficos propostos nesta tese são adequados para vários tipos de aplicações. Neste trabalho também foi considerado características de qualidade as quais são representadas por um modelo de regressão não-linear. Para o modelo de regressão não-linear considerado, a proposta é utilizar um método que divide o perfil não-linear em partes lineares, mais especificamente, um algoritmo para este fim, proposto na literatura, foi utilizado. Desta forma, foi possível validar a técnica proposta, mostrando que a mesma é robusta no sentido que permite tipos diferentes de perfis não-lineares. Aproxima-se, portanto um perfil não-linear por perfis lineares por partes, o que proporciona o monitoramento de cada perfil linear por gráficos de controle, como os gráficos de controle desenvolvidos nesta tese. Ademais apresenta-se a metodologia de decompor um perfil não-linear em partes lineares de forma detalhada e completa, abrindo espaço para ampla utilização.
Resumo:
Esta Dissertação irá apresentar a utilização de técnicas de controle nãolinear, tais como o controle adaptativo e robusto, de modo a controlar um sistema de Eletroestimulação Funcional desenvolvido pelo laboratório de Engenharia Biomédica da COPPE/UFRJ. Basicamente um Eletroestimulador Funcional (Functional Electrical Stimulation FES) se baseia na estimulação dos nervos motores via eletrodos cutâneos de modo a movimentar (contrair ou distender) os músculos, visando o fortalecimento muscular, a ativação de vias nervosas (reinervação), manutenção da amplitude de movimento, controle de espasticidade muscular, retardo de atrofias e manutenção de tonicidade muscular. O sistema utilizado tem por objetivo movimentar os membros superiores através do estímulo elétrico de modo a atingir ângulos-alvo pré-determinados para a articulação do cotovelo. Devido ao fato de não termos conhecimento pleno do funcionamento neuro-motor humano e do mesmo ser variante no tempo, não-linear, com parâmetros incertos, sujeito a perturbações e completamente diferente para cada indivíduo, se faz necessário o uso de técnicas de controle avançadas na tentativa de se estabilizar e controlar esse tipo de sistema. O objetivo principal é verificar experimentalmente a eficácia dessas técnicas de controle não-linear e adaptativo em comparação às técnicas clássicas, de modo a alcançar um controle mais rápido, robusto e que tenha um desempenho satisfatório. Em face disso, espera-se ampliar o campo de utilização de técnicas de controle adaptativo e robusto, além de outras técnicas de sistemas inteligentes, tais como os algoritmos genéticos, provando que sua aplicação pode ser efetiva no campo de sistemas biológicos e biomédicos, auxiliando assim na melhoria do tratamento de pacientes envolvidos nas pesquisas desenvolvidas no Laboratório de Engenharia Biomédica da COPPE/UFRJ.
Resumo:
Picking up an empty milk carton that we believe to be full is a familiar example of adaptive control, because the adaptation process of estimating the carton's weight must proceed simultaneously with the control process of moving the carton to a desired location. Here we show that the motor system initially generates highly variable behavior in such unpredictable tasks but eventually converges to stereotyped patterns of adaptive responses predicted by a simple optimality principle. These results suggest that adaptation can become specifically tuned to identify task-specific parameters in an optimal manner.
Resumo:
The control of a wind turbine to the mean wind speed in a gusty wind results in very poor performance. Fluctuations in wind speed with time constants shorter than the response time of a wind turbine results in operation away from optimum design conditions. The effectiveness of a turbine operating in a gusty wind is shown though the use of an unsteady performance coefficient, C e. This performance coefficient is similar in form to a power coefficient. However in order to accommodate unsteady effects, Ce is defined as a ratio of energy extracted to the total wind energy available over a set time period. The turbine's response to real wind data is modelled, in the first instance, by assuming a constant rotational speed operation. It is shown that a significant increase in energy production can be realized by demanding a Tip Speed Ratio above the steady state optimum. The constant speed model is then further extended to incorporate inertial and controller effects. Parameters dictating how well a turbine can track a demand in Tip Speed Ratio have been identified and combined, to form a non-dimensional turbine response parameter. This parameter characterizes a turbine's ability to track a demand in Tip Speed Ratio dependent on an effective gust frequency. A significant increase in energy output of 42% and 245% is illustrated through the application of this over-speed control. This is for the constant rotational speed and Tip Speed Ratio feedback models respectively. The affect of airfoil choice on energy extraction within a gusty wind has been considered. The adaptive control logic developed enables the application of airfoils demonstrating high maximum L/D values but sharp stalling characteristics to be successfully used in a VAWT design.
Resumo:
It has been shown that during arm movement, humans selectively change the endpoint stiffness of their arm to compensate for the instability in an unstable environment. When the direction of the instability is rotated with respect to the direction of movement, it was found that humans modify the antisymmetric component of their endpoint stiffness. The antisymmetric component of stiffness arises due to reflex responses suggesting that the subjects may have tuned their reflex responses as part of the feedforward adaptive control. The goal of this study was to examine whether the CNS modulates the gain of the reflex response for selective tuning of endpoint impedance. Subjects performed reaching movements in three unstable force fields produced by a robotic manipulandum, each field differing only in the rotational component. After subjects had learned to compensate for the field, allowing them to make unperturbed movements to the target, the endpoint stiffness of the arm was estimated in the middle of the movements. At the same time electromyographic activity (EMG) of six arm muscles was recorded. Analysis of the EMG revealed differences across force fields in the reflex gain of these muscles consistent with stiffness changes. This study suggests that the CNS modulates the reflex gain as part of the adaptive feedforward command in which the endpoint impedance is selectively tuned to overcome environmental instability. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
针对非线性自主移动机器人可能发生的驱动器故障,提出了一种新的自适应容错控制方法,即基于主动建模的逆动力学控制(IDC)方法.无色卡尔曼滤波(UKF)非线性估计方法用于对系统进行主动建模--状态和故障参数的在线联合估计,含有可调参数的逆动力学控制器用于根据UKF的估计结果进行控制策略的重构.仿真实验证明,具有主动建模的控制器能够有效地补偿系统的驱动器故障,使故障后的系统仍具有令人满意的性能。
Resumo:
利用基于无色卡尔曼滤波(UnscentedKalmanFilter,UKF)的状态和参数联合估计方法对移动机器人进行在线主动建模,基于该主动模型的逆动力学控制方法,实现了移动机器人对其自身不确定因素的自主性.在针对全方位移动机器人的仿真实验中,验证了UKF对时变的状态和参数的收敛性和跟踪能力,并给出了不确定界.基于主动建模的逆动力学控制方法与常值PID控制方法的比较结果,验证了该方法的有效性.
Resumo:
研究了水下机器人神经网络直接自适应控制方法,采用Lyapunov稳定性理论,证明了存在有界外界干扰和有界神经网络逼近误差条件下,水下机器人控制系统的跟踪误差一致稳定有界.为了进一步验证该水控制方法的正确性和稳定性,利用水下机器人实验平台进行了动力定位实验、单自由度跟踪实验和水平面跟踪实验等验证实验.
Resumo:
提出了基于广义动态模糊神经网络的水下机器人直接自适戍控制方法,该控制方法既不需要预先知道模糊神经结构,也不需要预先的训练阶段,完全通过在线自适应学习算法构建水下机器人的逆动力学模型.首先,本文提出了基于这种网络结构的水下机器人直接自适应控制器,然后,利用Lyapunov稳定理论,证明了基于该控制器的水下机器人控制系统闭环稳定性,最后,采用某水下机器人模型仿真验证了该控制方法的有效性。
Resumo:
深海机器人推进电机系统中出现的混沌现象,直接影响深海机器人稳定性、可靠性和安全性.采用自适应控制技术对其混沌行为加以控制,对该方法的可行性和有效性进行了证明.设计和构造了易于工程实施的混沌控制器,用于深海机器人推进电机系统混沌控制.仿真实验表明,推进电机系统在自适应控制器的作用下可迅速脱离混沌状态,并进入持续稳定状态,控制效果明显.可以为深海机器人推进电机系统中可能出现的混沌运行行为提供控制策略和抑制预案,有利于混沌控制嵌入软件的开发,确保深海机器人稳定、可靠和安全地运行,具有一定的实用价值.
Resumo:
本文针对多连杆柔性机械臂的运动轨迹控制问题,讨论了动力学建模、控制系统结构设计以及鲁棒自适应控制算法,运用假设模态方法得到了柔性机械臂动力学近似方程,通过对柔性机械臂动力学特性分析,建立了等价动力学模型,依此提出了一种鲁棒自适应控制算法,并给出了仿真研究结果。
Resumo:
本文为动力学控制工业机器人机械手提出一种综合控制算法。该控制算法,利用小脑模型算术计算机模块模拟机器人机械手的动力学方程并计算实现期望运动所需力矩作为前馈力矩控制项;利用自适应控制器实现反馈控制,以消除由输入扰动和参数变化而引起的机器人机械手运动误差。这种控制方法在时间上是有效的,且很适合于定点实现。控制方法的有效性通过四自由度的直接驱动机器人前两个关节的计算机仿真实验得到验证。
Resumo:
本文提出了用多级自适应控制的方法实现机器人关节系统的自适应控制,并给出了两级自适应控制器的设计方法.最后以某机器人关节系统为对象对两级自适应控制器进行了仿真分析.
Resumo:
现有的机器人自适应控制基本上都是在建立机器人线性化的动力学模型的基础上,采用某种显式或隐式参数辨识的方法,在线地修正控制作用.本文针对机器人运动和动力学参数变化的固有特点,提出一种完全不同的自学习自适应方法.这种方法基于智能机器人分级系统中的两级结构,并且在空间域里而不是在时间域里处理机器人参数的变化.把机器人的作业空间划分成子空间,其中包括重力载荷的作用,每个子空间对应一组控制器.规划的轨迹映射到作业空间形成子空间序列.用自学习方法选择与这个序列对应的最佳控制器序列.该方法算法简单,计算量小.避开了通常的自适应方法遇到的一系列困难问题.