953 resultados para Acyl-CoA Dehydrogenase
Resumo:
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.
Resumo:
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder with impaired β-oxidation of very long chain fatty acids (VLCFAs) and reduced function of peroxisomal very long chain fatty acyl-CoA synthetase (VLCS) that leads to severe and progressive neurological disability. The X-ALD gene, identified by positional cloning, encodes a peroxisomal membrane protein (adrenoleukodystrophy protein; ALDP) that belongs to the ATP binding cassette transporter protein superfamily. Mutational analyses and functional studies of the X-ALD gene confirm that it and not VLCS is the gene responsible for X-ALD. Its role in the β-oxidation of VLCFAs and its effect on the function of VLCS are unclear. The complex pathology of X-ALD and the extreme variability of its clinical phenotypes are also unexplained. To facilitate understanding of X-ALD pathophysiology, we developed an X-ALD mouse model by gene targeting. The X-ALD mouse exhibits reduced β-oxidation of VLCFAs, resulting in significantly elevated levels of saturated VLCFAs in total lipids from all tissues measured and in cholesterol esters from adrenal glands. Lipid cleft inclusions were observed in adrenocortical cells of X-ALD mice under the electron microscope. No neurological involvement has been detected in X-ALD mice up to 6 months. We conclude that X-ALD mice exhibit biochemical defects equivalent to those found in human X-ALD and thus provide an experimental system for testing therapeutic intervention.
Resumo:
Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic–euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle–lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver–lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.
Resumo:
Peroxisome proliferators cause rapid and coordinated transcriptional activation of genes encoding peroxisomal beta-oxidation system enzymes by activating peroxisome proliferator-activated receptor (PPAR) isoform(s). Since the thyroid hormone (T3; 3,3',5-triiodothyronine) receptor (TR), another member of the nuclear hormone receptor superfamily, regulates a subset of fatty acid metabolism genes shared with PPAR, we examined the possibility of interplay between peroxisome proliferator and T3 signaling pathways. T3 inhibited ciprofibrate-induced luciferase activity as well as the endogenous peroxisomal beta-oxidation enzymes in transgenic mice carrying a 3.2-kb 5'-flanking region of the rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase gene fused to the coding region of luciferase. Transfection assays in hepatoma H4-II-E-C3 and CV-1 cells indicated that this inhibition is mediated by TR in a ligand-dependent fashion. Gel shift assays revealed that modulation of PPAR action by TR occurs through titration of limiting amounts of retinoid X receptor (RXR) required for PPAR activation. Increasing amounts of RXR partially reversed the inhibition in a reciprocal manner; PPAR also inhibited TR activation. Results with heterodimerization-deficient TR and PPAR mutants further confirmed that interaction between PPAR and TR signaling systems is indirect. These results suggest that a convergence of the peroxisome proliferator and T3 signaling pathways occurs through their common interaction with the heterodimeric partner RXR.
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
A obtenção de uma lavoura com população adequada de plantas depende da utilização de diferentes práticas agronômicas, estando o sucesso condicionado ao uso de sementes de boa qualidade. No entanto, a semeadura dificilmente é realizada em condições ideais o que resulta em problemas na emergência das plantas. Grande é a procura por alternativas que melhorem a germinação e o desenvolvimento inicial dos cultivos resultando em uniformidade de emergência, garantindo o estande e culminando em produção. O tratamento de sementes com agroquímicos fitossanitários é uma solução parcial no combate de agentes fitopatológicos e pragas, mas poucas são as soluções adotadas para melhorar o desenvolvimento vegetal inicial, que pode levar a desuniformidade e falhas no estande gerando prejuízos econômicos. Os extratos de algas já demonstraram em diversos estudos sua eficiência no desenvolvimento vegetal quando aplicados em plantas. Porém poucos são os estudos voltados para os efeitos dos extratos de algas na germinação e emergência. Assim, o intuito deste trabalho foi testar o extrato comercial de Ascophyllum nodosum, e diferentes fracionamentos do mesmo, no tratamento de sementes de soja e milho. Avaliou-se o efeito de diferentes doses no desenvolvimento das plântulas e as doses de melhor resposta foram utilizadas no tratamento de sementes de soja a fim de associar as respostas obtidas à expressão gênica de 9 genes relacionados ao processo germinativo em 24 e 48h de embebição. Sementes de soja tratadas com o extrato comercial resultaram em plântulas menos desenvolvidas o que pode estar relacionado ao alto teor de sais contidos no produto. O tratamento com as demais frações favoreceu o desenvolvimento das plântulas, principalmente o desenvolvimento radicular. Sementes de milho tratadas não apresentaram desenvolvimento tão satisfatório quanto as sementes de soja tratadas. A análise da expressão gênica relativa demonstrou que o tratamento com frações do extrato comercial é capaz de regular algumas vias do metabolismo hormonal, como a isopentenil transferase e a GA20 oxidase 2, e do catabolismo de reservas, como a acil-CoA oxidase. Em condições ótimas, o tratamento de sementes de soja com frações do extrato comercial de A. nodosum favoreceu o desenvolvimento inicial das plântulas de soja, no entanto não ocasionou grandes alterações no desenvolvimento de milho. Este estudo demonstrou a possibilidade de utilização de frações do extrato de A. nodosum no favorecimento do desenvolvimento inicial de plântulas de soja. Maiores estudos são necessários quanto às respostas em campo e na atenuação de estresses para viabilizar seu uso como um bioestimulante em sementes.
Resumo:
Oxidative stress and free radical production have been implicated in Alzheimer's disease, where low levels of the antioxidant vitamin C (ascorbate) have been shown to be associated with the disease. In this study, neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide in the presence of ascorbate in order to elucidate the me0chanism(s) of protection against oxidative stress afforded by ascorbate. Protein oxidation, glutathione levels, cell viability and the effects on the proteome and its oxidized counterpart were monitored. SH-SY5Y cells treated with ascorbate prior to co-incubation with peroxide showed increased viability in comparison to cells treated with peroxide alone. This dual treatment also caused an increase in protein carbonyl content and a decrease in glutathione levels within the cells. Proteins, extracted from SH-SY5Y cells that were treated with either ascorbate or peroxide alone or with ascorbate prior to peroxide, were separated by two-dimensional gel electrophoresis and analyzed for oxidation. Co-incubation for 24 hours decreased the number of oxidised proteins (e.g. acyl CoA oxidase 3) and induced brain derived neurotrophic factor (BDNF) expression. Enhanced expression of BDNF may contribute to the protective effects of ascorbate against oxidative stress in neuronal cells.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Picornaviruses are a group of human and animal pathogens capable of inflicting serious public health diseases and economic burdens. Treatments options through vaccines for prevention or antivirals to cure infection are not available for the vast majority of these viruses. These shortcomings, in the development of vaccines or antivirals therapeutic, are linked to the genetic diversity and to an incomplete understanding of the biology of these viruses. Despite the diverse host range, this group of positive-strand RNA viruses shares the same replication mechanisms, including the development of membranous structures (replication organelles) in the cytoplasm of infected cells. The development of these membranous structures, which serve as sites for the replication of the viral RNA genome, has been linked to the hijacking of elements of the cellular membrane metabolism pathways. Here we show that upon picornavirus infection, there is a specific activation of acyl-CoA synthetase enzymes resulting in strong import and accumulation of long chain fatty acids in the cytoplasm of infected cells. We show that the newly imported fatty acids serve as a substrate for the upregulation of phosphatidylcholine synthesis required for the structural development of replication organelles. In this work, we identified that acyl-CoA synthetase long chain 3 (ACSL3) is required for the upregulation of lipids syntheses and the replication of poliovirus. We have shown that the poliovirus protein 2A was required but not sufficient for the activation of import of long chain fatty acids in infected cells. We demonstrated that the fatty acid import is upregulated upon infection by diverse picornaviruses and that such upregulation is not dependent on activation of ER stress response or the autophagy pathways. In this work, we have demonstrated that phosphatidylcholine was required for the structural development of replication organelles. Phosphatidylcholine synthesis was dispensable for the production of infectious particles at high MOI but required at a low MOI for the protection of the replication complexes from the cellular innate immunity mechanisms.
Resumo:
Sequencing of a fragment of Helicobacter pylori genome led to the identification of two open reading frames showing striking homology with Coenzyme A (CoA) transferases, enzymes catalyzing the reversible transfer of CoA from one carboxylic acid to another. The genes were present in all H. pylori strains tested by polymerase chain reaction or slot blotting but not in Campylobacter jejuni. Genes for the putative A and B subunits of H. pylori CoA-transferase were introduced into the bacterial expression vector pKK223-3 and expressed in Escherichia coli JM105 cells. Amino acid sequence comparisons, combined with measurements of enzyme activities using different CoA donors and acceptors, identified the H. pylori CoA-transferase as a succinyl CoA:acetoacetate CoA-transferase. This activity was consistently observed in different H. pylori strains. Antibodies raised against either recombinant A or B subunits recognized two distinct subunits of Mr approximately 26,000 and 24, 000 that are both necessary for H. pylori CoA-transferase function. The lack of alpha-ketoglutarate dehydrogenase and of succinyl CoA synthetase activities indicates that the generation of succinyl CoA is not mediated by the tricarboxylic acid cycle in H. pylori. We postulate the existence of an alternative pathway where the CoA-transferase is essential for energy metabolism.
Resumo:
Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl–SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies.
Resumo:
In this study we investigated the variations of the maximal activities of the rate-controlling glycolytic enzymes (i.e., hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK) and of the pyruvate-dehydrogenase complex (PDHc) during the early embryogenesis of Xenopus laevis (from cleavage through hatching). All the enzymatic assays, using different coupled reactions, were performed spectrophotometrically on cytosolic and mitochondrial fractions. The maximal HK activity increases markedly from neurulation onwards, PFK activity presents a peak around gastrulation, PK activity remains relatively constant throughout the period studied and the highest PDHc activity is observed during cleavage. The specific activities display the same temporal pattern. Furthermore, in the sequence of reactions by which glucose is degraded to form acetyl-CoA, the maximal activities of PFK and PK are not limiting while those of HK and PDHc could be rate-limiting at relatively late developmental stages (hatching).
Resumo:
In order to investigate a possible association between soybean malate synthase (MS; L-malate glyoxylate-lyase, CoA-acetylating, EC 4.1.3.2) and glyoxysomal malate dehydrogenase (gMDH; (S)-malate: NAD(+) oxidoreductase, EC 1.1.1.37), two consecutive enzymes in the glyoxylate cycle, their elution profiles were analyzed on Superdex 200 HR fast protein liquid chromatography columns equilibrated in low- and high-ionic-strength buffers. Starting with soluble proteins extracted from the cotyledons of 5-d-old soybean seedlings and a 45% ammonium sulfate precipitation, MS and gMDH coeluted on Superdex 200 HR (low-ionic-strength buffer) as a complex with an approximate relative molecular mass (M(r)) of 670000. Dissociation was achieved in the presence of 50 mM KCl and 5 mM MgCl2, with the elution of MS as an octamer of M, 510 000 and of gMDH as a dimer of M, 73 000. Polyclonal antibodies raised to the native copurified enzymes recognized both denatured MS and gMDH on immunoblots, and their native forms after gel filtration. When these antibodies were used to screen a lambda ZAP II expression library containing cDNA from 3-d-old soybean cotyledons, they identified seven clones encoding gMDH, whereas ten clones encoding MS were identified using an antibody to SDS-PAGE-purified MS. Of these cDNA clones a 1.8 kb clone for MS and a 1.3-kb clone for gMDH were fully sequenced. While 88% identity was found between mature soybean gMDH and watermelon gMDH, the N-terminal transit peptides showed only 37% identity. Despite this low identity, the soybean gMDH transit peptide conserves the consensus R(X(6))HL motif also found in plant and mammalian thiolases.
Resumo:
University, 2006 Dr. Sandra J. Peters Pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate, to form acetyl-CoA. PDH activity is down-regulated by intrinsic PDH kinases (predominantly PDK2 and PDK4 isoforms), but the understanding of the PDK isoform distribution and adaptation to nutritional stresses has been restricted to mixed mitochondrial populations, and not delineated between subsarcolemmal (SS) and intermyofibrillar (IMF) subpopulations. SS and IMF mitochondria exhibit distinct morphological and biochemical properties; however the functional differences are not well understood. This study investigated the effect of fed (FED) versus 48 h total foodrestriction (FR) on rat red gastrocnemius muscle PDK2 and 4 isoform content in SS and IMF mitochondria. PDK4 content was ~3-5 fold higher in SS mitochondria compared to IMF (p=0.001), and increased with FR -3-4- fold in both subpopulations (p<0.001). PDK2 was -2.5-4 fold higher in SS mitochondria compared to IMF (p=0.001), but PDK2 was unaltered with FR. Citrate synthase activity (|imol/min/mg mitochondrial protein) was not different between either subpopulation. As well there were no significant differences between mitochondrial subpopulations in PDH complex components in both fed and FR states. These results demonstrate that there is a markedly higher content of both PDK isofonns in SS compared to IMF mitochondria. Although PDK2 does not increase in either subpopulation in response to FR, PDK4 increases to a similar extent in both SS and IMF after 48 h food-restriction.