995 resultados para Acoustic Immittance Measures
Resumo:
Monitoring environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; online collaboration, manual, automatic and human-in-the loop analysis.
Resumo:
The main factors affecting environmental sensitivity to degradation are soil, vegetation, climate and management, through either their intrinsic characteristics or by their interaction on the landscape. Different levels of degradation risks may be observed in response to particular combinations of the aforementioned factors. For instance, the combination of inappropriate management practices and intrinsically weak soil conditions will result in a severe degradation of the environment, while the combination of the same type of management with better soil conditions may lead to negligible degradation.The aim of this study was to identify factors and their impact on land degradation processes in three areas of the Basilicata region (southern Italy) using a procedure that couples environmental indices, GIS and crop-soil simulation models. Areas prone to desertification were first identified using the Environmental Sensitive Areas (ESA) procedure. An analysis for identifying the weight that each of the contributing factor (climate, soil, vegetation, management) had on the ESA was carried out using GIS techniques. The SALUS model was successfully executed to identify the management practices that could lead to better soil conditions to enhance land use sustainability. The best management practices were found to be those that minimized soil disturbance and increased soil organic carbon. Two alternative scenarios with improved soil quality and subsequently improving soil water holding capacity were used as mitigation measures. The ESA were recalculated and the effects of the mitigation measures suggested by the model were assessed. The new ESA showed a significant reduction on land degradation.
Resumo:
Although conditioning is routinely used in mechanical tests of tendon in vitro, previous in vivo research evaluating the influence of body anthropometry on Achilles tendon thickness has not considered its potential effects on tendon structure. This study evaluated the relationship between Achilles tendon thickness and body anthropometry in healthy adults both before and after resistive ankle plantarflexion exercise. A convenience sample of 30 healthy male adults underwent sonographic examination of the Achilles tendon in addition to standard anthropometric measures of stature and body weight. A 10-5 MHz linear array transducer was used to acquire longitudinal sonograms of the Achilles tendon, 20 mm proximal to the tendon insertion. Participants then completed a series (90-100 repetitions) of conditioning exercises against an effective resistance between 100% and 150% body weight. Longitudinal sonograms were repeated immediately on completion of the exercise intervention, and anteroposterior Achilles tendon thickness was determined. Achilles tendon thickness was significantly reduced immediately following conditioning exercise (t = 9.71, P < 0.001), resulting in an average transverse strain of -18.8%. In contrast to preexercise measures, Achilles tendon thickness was significantly correlated with body weight (r = 0.72, P < 0.001) and to a lesser extent height (r = 0.45, P < 0.01) and body mass index (r = 0.63, P < 0.001) after exercise. Conditioning of the Achilles tendon via resistive ankle exercises induces alterations in tendon structure that substantially improve correlations between Achilles tendon thickness and body anthropometry. It is recommended that conditioning exercises, which standardize the load history of tendon, are employed before measurements of sonographic tendon thickness in vivo.
Resumo:
Acoustic emission (AE) is the phenomenon where stress waves are generated due to rapid release of energy within a material caused by sources such as crack initiation or growth. AE technique involves recording the stress waves by means of sensors and subsequent analysis of the recorded signals to gather information about the nature of the source. Though AE technique is one of the popular non destructive evaluation (NDE) techniques for structural health monitoring of mechanical, aerospace and civil structures; several challenges still exist in successful application of this technique. Presence of spurious noise signals can mask genuine damage‐related AE signals; hence a major challenge identified is finding ways to discriminate signals from different sources. Analysis of parameters of recorded AE signals, comparison of amplitudes of AE wave modes and investigation of uniqueness of recorded AE signals have been mentioned as possible criteria for source differentiation. This paper reviews common approaches currently in use for source discrimination, particularly focusing on structural health monitoring of civil engineering structural components such as beams; and further investigates the applications of some of these methods by analyzing AE data from laboratory tests.
Resumo:
Forecasts of volatility and correlation are important inputs into many practical financial problems. Broadly speaking, there are two ways of generating forecasts of these variables. Firstly, time-series models apply a statistical weighting scheme to historical measurements of the variable of interest. The alternative methodology extracts forecasts from the market traded value of option contracts. An efficient options market should be able to produce superior forecasts as it utilises a larger information set of not only historical information but also the market equilibrium expectation of options market participants. While much research has been conducted into the relative merits of these approaches, this thesis extends the literature along several lines through three empirical studies. Firstly, it is demonstrated that there exist statistically significant benefits to taking the volatility risk premium into account for the implied volatility for the purposes of univariate volatility forecasting. Secondly, high-frequency option implied measures are shown to lead to superior forecasts of the intraday stochastic component of intraday volatility and that these then lead on to superior forecasts of intraday total volatility. Finally, the use of realised and option implied measures of equicorrelation are shown to dominate measures based on daily returns.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
This technical report describes the methods used to obtain a list of acoustic indices that are used to characterise the structure and distribution of acoustic energy in recordings of the natural environment. In particular it describes methods for noise reduction from recordings of the environment and a fast clustering algorithm used to estimate the spectral richness of long recordings.
Resumo:
Acoustic sensors provide an effective means of monitoring biodiversity at large spatial and temporal scales. They can continuously and passively record large volumes of data over extended periods, however these data must be analysed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced users can produce accurate results, however the time and effort required to process even small volumes of data can make manual analysis prohibitive. Our research examined the use of sampling methods to reduce the cost of analysing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilising five days of manually analysed acoustic sensor data from four sites, we examined a range of sampling rates and methods including random, stratified and biologically informed. Our findings indicate that randomly selecting 120, one-minute samples from the three hours immediately following dawn provided the most effective sampling method. This method detected, on average 62% of total species after 120 one-minute samples were analysed, compared to 34% of total species from traditional point counts. Our results demonstrate that targeted sampling methods can provide an effective means for analysing large volumes of acoustic sensor data efficiently and accurately.
Resumo:
While the justice implications of climate change are well understood by the international climate regime, solutions to meaningfully address climate injustice are still emerging. This article explores how a number of different theories of justice have influenced the development of international climate regime policies and measures. Such analysis is undertaken by examining the theories of remedial justice, environmental justice, energy justice, social justice and international justice. This article demonstrates how each of these theories has influenced the development of international climate policies or measures. No one theory of justice has the ability to respond to the multifaceted justice implications that arise as a result of climate change. It is argued that a variety of lenses of justice are useful when examining issues of injustice in the climate context. It is believed that articulating the justice implications of climate change by reference to theories of justice assists in clarifying the key issues giving rise to injustice. This article finds that while there has been some progress by the regime in recognising the injustices associated with climate change, such recognition is piecemeal and the implementation of many of the policies and measures discussed within this article needs to be either scaled up, or extended into more far-reaching policies and measures to overcome climate justice concerns. Overall it is suggested that climate justice concerns need to be clearly enunciated within key adaptation instruments so as to provide a legal and legitimate basis upon which to leverage action.
Resumo:
Purpose: The objective was to investigate the association between corneal sensitivity and established measures of diabetic peripheral neuropathy (DPN). Methods: Corneal sensitivity was measured in 93 individuals with diabetes, 146 diabetic individuals without neuropathy and 61 control individuals without diabetes or neuropathy using a non-contact corneal aesthesiometer at the baseline visit of a five-year longitudinal natural history study of DPN. The correlation between corneal sensitivity and established measures of neuropathy was estimated and multi-dimensional scaling was used to represent similarities and dissimilarities between variables. Results: The corneal sensitivity threshold was significantly correlated with a majority of established measures of DPN. Correlation coefficients ranged from -0.32 to 0.26. Using multi-dimensional scaling, non-contact corneal aesthesiometry was closer to the neuropathy disability score, diabetic neuropathy symptom score and Neuropad and most dissimilar to electrophysiological parameters and quantitative sensory testing. Conclusion: Corneal sensitivity, although not strongly related, is associated with other functional measures of DPN and might provide a useful adjunct in identifying functional loss of small nerve fibre integrity.
Resumo:
Noncompliance with speed limits is one of the major safety concerns in roadwork zones. Although numerous studies have attempted to evaluate the effectiveness of safety measures on speed limit compliance, many report inconsistent findings. This paper aims to review the effectiveness of four categories of roadwork zone speed control measures: Informational, Physical, Enforcement, and Educational measures. While informational measures (static signage, variable message signage) evidently have small to moderate effects on speed reduction, physical measures (rumble strips, optical speed bars) are found ineffective for transient and moving work zones. Enforcement measures (speed camera, police presence) have the greatest effects, while educational measures also have significant potential to improve public awareness of roadworker safety and to encourage slower speeds in work zones. Inadequate public understanding of roadwork risks and hazards, failure to notice signs, and poor appreciation of safety measures are the major causes of noncompliance with speed limits.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, as the gathered information is from the crowd, the data quality is always hard to manage. There are many ways to manage data quality, and reputation management is one of the common approaches. In recent year, many research teams have deployed many audio or image sensors in natural environment in order to monitor the status of animals or plants. The collected data will be analysed by ecologists. However, as the amount of collected data is exceedingly huge and the number of ecologists is very limited, it is impossible for scientists to manually analyse all these data. The functions of existing automated tools to process the data are still very limited and the results are still not very accurate. Therefore, researchers have turned to recruiting general citizens who are interested in helping scientific research to do the pre-processing tasks such as species tagging. Although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Therefore, this research aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we aim to investigate how to use reputation management to enhance data reliability. Reputation systems have been used to solve the uncertainty and improve data quality in many marketing and E-Commerce domains. The commercial organizations which have chosen to embrace the reputation management and implement the technology have gained many benefits. Data quality issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. However, research on reputation management in this area is relatively new. We therefore start our investigation by examining existing reputation systems in different domains. Then we design novel reputation management approaches for Citizen Science projects to categorise participants and data. We have investigated some critical elements which may influence data reliability in Citizen Science projects. These elements include personal information such as location and education and performance information such as the ability to recognise certain bird calls. The designed reputation framework is evaluated by a series of experiments involving many participants for collecting and interpreting data, in particular, environmental acoustic data. Our research in exploring the advantages of reputation management in Citizen Science (or crowdsourcing in general) will help increase awareness among organizations that are unacquainted with its potential benefits.