999 resultados para Accumulation rate, planktic foraminiferal mass


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantified postdepositional losses of methane sulfonate (MSA-), nitrate, and chloride at the European Project for Ice Coring in Antarctica (EPICA) drilling site in Dronning Maud Land (DML) (75°S, 0°E). Analyses of four intermediate deep firn cores and 13 snow pits were considered. We found that about 26 ± 13% of the once deposited nitrate and typically 51 ± 20% of MSA- were lost, while for chloride, no significant depletion could be observed in firn older than one year. Assuming a first order exponential decay rate, the characteristic e-folding time for MSA- is 6.4 ± 3 years and 19 ± 6 years for nitrate. It turns out that for nitrate and MSA- the typical mean concentrations representative for the last 100 years were reached after 5.4 and 6.5 years, respectively, indicating that beneath a depth of around 1.2-1.4 m postdepositional losses can be neglected. In the area of investigation, only MSA- concentrations and postdepositional losses showed a distinct dependence on snow accumulation rate. Consequently, MSA- concentrations archived at this site should be significantly dependent on the variability of annual snow accumulation, and we recommend a corresponding correction. With a simple approach, we estimated the partial pressure of the free acids MSA, HNO3, and HCl on the basis of Henry's law assuming that ionic impurities of the bulk ice matrix are localized in a quasi-brine layer (QBL). In contrast to measurements, this approach predicts a nearly complete loss of MSA-, NO3 - , and Cl-.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new planktic foraminiferal zonal scheme is presented for subdivision of Upper Cretaceous pelagic carbonate sequences in the circum-Antarctic region. Definition of the zones and subzones is based study of foraminifera from 13 deep-sea sections that were poleward of 50 °S paleolatitude and within the Austral Biogeographic Realm during Late Cretaceous time. The proposed biostratigraphic scheme includes seven Upper Cretaceous zones, with an average stratigraphic resolution of 4.4 m.y., and six subzones, which are all within the Maastrichtian Stage, with an average stratigraphic resolution of 1.4 m.y. The considerably higher resolution in the Maastrichtian Stage is a result of good foraminiferal preservation, availability of high quality magnetostratigraphic sections, and complete composite stratigraphic recovery in the Atlantic and Indian Ocean sectors of the Antarctic Ocean. Diminished resolution in the pre-Maastrichtian sediments of southern high latitude sections results from: (1) incomplete recovery of the middle Campanian, lower Santonian and most of the Cenomanian-lower Coniacian intervals, (2) presence of local and regional hiatuses, (3) paleobathymetric shallowing with increasing age at some sites, resulting in impoverished older planktic assemblages, and (4) poorer preservation with increasing burial depth. Cross-latitude correlation of the Campanian and older austral sequences may be improved with future drilling by recovery of sections that span existing stratigraphic gaps. Correlation of high latitude bioevents with chemostratigraphic events and their intercalibration with the magnetostratigraphy and the Geomagnetic Polarity Time Scale are needed for better chronostratigraphic resolution in existing high latitude sequences.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three uppermost Cretaceous through basal Paleocene stratigraphic sequences are examined for planktic foraminiferal assemblage stability and temporal succession patterns. These sequences are at mid-latitude South Atlantic DSDP Site 528, then-equatorial Pacific DSDP Site 577 and the Tethyan shelf Ben Gurion section of the Negev, Israel. In order to better estimate biogeographic patterns and habitat preferences, the results of these analyses are compared to previous Cretaceous biogeographic studies and to previous analyses of Cretaceous-Tertiary (K/T) boundary shelf and epicontinental sections. Results indicate that immediately following the K/T boundary, the examined epicontinental and open-ocean sites were exploited primarily by previously epicontinental planktic foraminiferal assemblages. This pattern of K/T boundary assemblage dominance suggests the geologically instantaneous break-down of Late Cretaceous epicontinental and open-ocean biogeographic provincialization. This shift in open-ocean foraminiferal assemblages is not consistent with models of nonselective K/T boundary extinctions, but is consistent with models of extinction resistence and offshore expansion of nearshore taxa. The re-establishment of stable biogeographic differences between open-ocean and epicontinental planktic foraminiferal assemblages occurs by the basal Parvularugoglobigerina eugubina Zone. At open-ocean sites 528 and 577 and the outershelf Ben Gurion section, P0 and P. eugubina Zone faunal records are marked by a pronounced alternation between Paleocene biserial- and non-biserial-dominated assemblages, This alternation appears strongly damped at shelf and epicontinental sections previously examined. The first appearance and peak magnitude of abundant earliest Paleocene trochospiral forms (Parvularugoglobigerina, Eoglobigerina, Morozovella, Globoconusa) also vary from site to site and may depend closely on levels of primary carbonate productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.