584 resultados para Accessory foramina
Resumo:
FTIR-spektroskopia (Fourier-muunnosinfrapunaspektroskopia) on nopea analyysimenetelmä. Fourier-laitteissa interferometrin käyttäminen mahdollistaa koko infrapunataajuusalueen mittaamisen muutamassa sekunnissa. ATR-liitännäisellä varustetun FTIR-spektrometrin käyttö ei edellytä juuri näytteen valmistusta ja siksi menetelmä on käytössä myös helppo. ATR-liitännäinen mahdollistaa myös monien erilaisten näytteiden analysoinnin. Infrapunaspektrin mittaaminen onnistuu myös sellaisista näytteistä, joille perinteisiä näytteenvalmistusmenetelmiä ei voida käyttää. FTIR-spektroskopian avulla saatu tieto yhdistetään usein tilastollisiin monimuuttuja-analyyseihin. Klusterianalyysin avulla voidaan spektreistä saatu tieto ryhmitellä samanlaisuuteen perustuen. Hierarkkisessa klusterianalyysissa objektien välinen samanlaisuus määritetään laskemalla niiden välinen etäisyys. Pääkomponenttianalyysin avulla vähennetään datan ulotteisuutta ja luodaan uusia korreloimattomia pääkomponentteja. Pääkomponenttien tulee säilyttää mahdollisimman suuri määrä alkuperäisen datan variaatiosta. FTIR-spektroskopian ja monimuuttujamenetelmien sovellusmahdollisuuksia on tutkittu paljon. Elintarviketeollisuudessa sen soveltuvuutta esimerkiksi laadun valvontaan on tutkittu. Menetelmää on käytetty myös haihtuvien öljyjen kemiallisten koostumusten tunnistukseen sekä öljykasvien kemotyyppien havaitsemiseen. Tässä tutkimuksessa arvioitiin menetelmän käyttöä suoputken uutenäytteiden luokittelussa. Tutkimuksessa suoputken eri kasvinosien uutenäytteiden FTIR-spektrejä vertailtiin valikoiduista puhdasaineista mitattuihin FTIR-spektreihin. Puhdasaineiden FTIR-spektreistä tunnistettiin niiden tyypilliset absorptiovyöhykkeet. Furanokumariinien spektrien intensiivisten vyöhykkeiden aaltolukualueet valittiin monimuuttuja-analyyseihin. Monimuuttuja-analyysit tehtiin myös IR-spektrin sormenjälkialueelta aaltolukualueelta 1785-725 cm-1. Uutenäytteitä pyrittiin luokittelemaan niiden keräyspaikan ja kumariinipitoisuuden mukaan. Keräyspaikan mukaan ryhmittymistä oli havaittavissa, mikä selittyi vyöhykkeiden aaltolukualueiden mukaan tehdyissä analyyseissa pääosin kumariinipitoisuuksilla. Näissä analyyseissa uutenäytteet pääosin ryhmittyivät ja erottuivat kokonaiskumariinipitoisuuksien mukaan. Myös aaltolukualueen 1785-725 cm-1 analyyseissa havaittiin keräyspaikan mukaan ryhmittymistä, mitä kumariinipitoisuudet eivät kuitenkaan selittäneet. Näihin ryhmittymisiin vaikuttivat mahdollisesti muiden yhdisteiden samanlaiset pitoisuudet näytteissä. Analyyseissa käytettiin myös muita aaltolukualueita, mutta tulokset eivät juuri poikenneet aiemmista. 2. kertaluvun derivaattaspektrien monimuuttuja-analyysit sormenjälkialueelta eivät myöskään muuttaneet tuloksia havaittavasti. Jatkotutkimuksissa nyt käytettyä menetelmää on mahdollista edelleen kehittää esimerkiksi tutkimalla monimuuttuja-analyyseissa 2. kertaluvun derivaattaspektreistä suppeampia, tarkkaan valittuja aaltolukualueita.
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.
Resumo:
We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Among squamate reptiles, lizards exhibit an impressive array of sex-determining modes viz. genotypic sex determination, temperature-dependent sex determination, co-occurrence of both these and those that reproduce parthenogenetically. The oviparous lizard, Calotes versicolor, lacks heteromorphic sex chromosomes and there are no reports on homomorphic chromosomes. Earlier studies on this species presented little evidence to the sex-determining mechanism. Here we provide evidences for the potential role played by incubation temperature that has a significant effect (P<0.01) on gonadal sex and sex ratio. The eggs were incubated at 14 different incubation temperatures. Interestingly, 100% males were produced at low (25.5 +/- 0.5 degrees C) as well as high (34 +/- 0.5 degrees C) incubation temperatures and 100% females were produced at low (23.5 +/- 0.5 degrees C) and high (31.5 +/- 0.5 degrees C) temperatures, clearly indicating the occurrence of TSD in this species. Sex ratios of individual clutches did not vary at any of the critical male-producing or female-producing temperatures within as well as across the seasons. However, clutch sex ratios were female- or male-biased at intermediate temperatures. Thermosensitive period occurred during the embryonic stages 3033. Three pivotal temperatures operate producing 1:1 sex ratio. Histology of gonad and accessory reproductive structures provide additional evidence for TSD. The sex-determining pattern, observed for the first time in this species, that neither compares to Pattern I [Ia (MF) and Ib (FM)] nor to Pattern II (FMF), is being referred to as FMFM pattern of TSD. This novel FMFM pattern of sex ratio exhibited by C. versicolor may have an adaptive significance in maintaining sex ratio. J. Exp. Zool. 317:3246, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (Pol gamma A/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of Pol gamma A. Kinetic constants for interactions between Pol gamma A-RECQL4, Pol gamma A-p53 and Pol gamma B-p53 indicate that RECQL4 and p53 are accessory factors for Pol gamma A-Pol gamma B and Pol gamma A-DNA interactions. RECQL4 enhances the binding of Pol gamma A to DNA, thereby potentiating the exonuclease and polymerization activities of Pol gamma A/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. Summary: The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.
Resumo:
Background: The function of a protein can be deciphered with higher accuracy from its structure than from its amino acid sequence. Due to the huge gap in the available protein sequence and structural space, tools that can generate functionally homogeneous clusters using only the sequence information, hold great importance. For this, traditional alignment-based tools work well in most cases and clustering is performed on the basis of sequence similarity. But, in the case of multi-domain proteins, the alignment quality might be poor due to varied lengths of the proteins, domain shuffling or circular permutations. Multi-domain proteins are ubiquitous in nature, hence alignment-free tools, which overcome the shortcomings of alignment-based protein comparison methods, are required. Further, existing tools classify proteins using only domain-level information and hence miss out on the information encoded in the tethered regions or accessory domains. Our method, on the other hand, takes into account the full-length sequence of a protein, consolidating the complete sequence information to understand a given protein better. Results: Our web-server, CLAP (Classification of Proteins), is one such alignment-free software for automatic classification of protein sequences. It utilizes a pattern-matching algorithm that assigns local matching scores (LMS) to residues that are a part of the matched patterns between two sequences being compared. CLAP works on full-length sequences and does not require prior domain definitions. Pilot studies undertaken previously on protein kinases and immunoglobulins have shown that CLAP yields clusters, which have high functional and domain architectural similarity. Moreover, parsing at a statistically determined cut-off resulted in clusters that corroborated with the sub-family level classification of that particular domain family. Conclusions: CLAP is a useful protein-clustering tool, independent of domain assignment, domain order, sequence length and domain diversity. Our method can be used for any set of protein sequences, yielding functionally relevant clusters with high domain architectural homogeneity. The CLAP web server is freely available for academic use at http://nslab.mbu.iisc.ernet.in/clap/.
Resumo:
OBJECTIVE To investigate the level and location of phosphodiesterase 5 (PDE5) expression in rat prostate. METHODS The ventral, dorsal, and lateral lobes of rat prostate were examined for PDE5 expression by Western blotting. Intact rat urogenital complex, including the urinary bladder and accessory reproductive glands, was examined for PDE5 expression by immunohistochemistry. Individual prostatic lobes were further examined by immunofluorescence for expression of PDE5, alpha-smooth muscle actin, and rat endothelial cell antigen. RESULTS Western blot analysis showed that PDE5 was expressed at a significantly lower level in dorsal lobe (DL) than in ventral lobe (VL) or lateral lobe (LL). Immunohistochemistry and immunofluorescence analyses showed that PDE5 was expressed in both acinar epithelium and periacinar smooth muscle. However, although similar levels of smooth muscle PDE5 expression were observed in all 3 prostatic lobes, significantly lower level of epithelial PDE5 expression was found in DL compared with VL or LL. In prostatic blood vessels, PDE5 expression was clearly visible in the endothelium but not as easily detectable in the smooth muscle. CONCLUSION PDE5 was expressed in the acinar epithelium and periacinar smooth muscle of rat prostate. However, the epithelial PDE5 expression was significantly less in DL than in VL or LL. Regardless, the acinar wall, not the blood vessel wall, is the predominant PDE5 expression site in rat prostate. (C) 2015 Elsevier Inc.
Resumo:
Calcineurin-like metallophosphoesterases (MPEs) form a large superfamily of binuclear metal-ion-centre-containing enzymes that hydrolyse phosphomono-, phosphodi-or phosphotri-esters in a metal-dependent manner. The MPE domain is found in Mre11/SbcD DNA-repair enzymes, mammalian phosphoprotein phosphatases, acid sphingomyelinases, purple acid phosphatases, nucleotidases and bacterial cyclic nucleotide phosphodiesterases. Despite this functional diversity, MPEs show a remarkably similar structural fold and active-site architecture. In the present review, we summarize the available structural, biochemical and functional information on these proteins. We also describe how diversification and specialization of the core MPE fold in various MPEs is achieved by amino acid substitution in their active sites, metal ions and regulatory effects of accessory domains. Finally, we discuss emerging roles of these proteins as non-catalytic protein-interaction scaffolds. Thus we view the MPE superfamily as a set of proteins with a highly conserved structural core that allows embellishment to result in dramatic and niche-specific diversification of function.
Resumo:
DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C-terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed.
Resumo:
Preliminary results show microradiography and scanning electron microscopy (SEM) to be more accurate methods of accessing growth layer groups (GLGs) in the teeth of Tursiops truncatus than transmitted light microscopy. Microradiography shows the rhythmic deposition of mineral as alternating radiopaque and radiolucent layers. It improves the resolution of GLGs near the pulp cavity in older individuals, better than either SEM or light microscopy. SEM of etched sections show GLGs as ridges and grooves which are easily counted from the micrograph. SEM also shows GLGs to be composed of fine incremental layers of uniform size and number which may allow for more precise age determination. Accessory layers are usually hypomineralized layers within the hypermineralized layer of the GLG and are more readily distinguishable as such in SEM of etched sections and microradiographs than in thin sections viewed under transmitted light. The neonatal line is hypomineralized, appearing translucent under transmitted light, radiolucent in a microradiograph, and as a ridge in SEM. (PDF contains 6 pages.)
Resumo:
Interleukin-2 is one of the lymphokines secreted by T helper type 1 cells upon activation mediated by T-cell receptor (TCR) and accessory molecules. The ability to express IL-2 is correlated with T-lineage commitment and is regulated during T cell development and differentiation. Understanding the molecular mechanism of how IL-2 gene inducibility is controlled at each transition and each differentiation process of T-cell development is to understand one aspect of T-cell development. In the present study, we first attempted to elucidate the molecular basis for the developmental changes of IL-2 gene inducibility. We showed that IL-2 gene inducibility is acquired early in immature CD4- CD8-TCR- thymocytes prior to TCR gene rearrangement. Similar to mature T cells, a complete set of transcription factors can be induced at this early stage to activate IL-2 gene expression. The progression of these cells to cortical CD4^+CD8^+TCR^(1o) cells is accompanied by the loss of IL-2 gene inducibility. We demonstrated that DNA binding activities of two transcription factors AP-1 and NF-AT are reduced in cells at this stage. Further, the loss of factor binding, especially AP-1, is attributable to the reduced ability to activate expression of three potential components of AP-1 and NF-AT, including c-Fos, FosB, and Fra-2. We next examined the interaction of transcription factors and the IL-2 promoter in vivo by using the EL4 T cell line and two non-T cell lines. We showed an all-or-none phenomenon regarding the factor-DNA interaction, i.e., in activated T cells, the IL-2 promoter is occupied by sequence-specific transcription factors when all the transcription factors are available; in resting T cells or non-T cells, no specific protein-DNA interaction is observed when only a subset of factors are present in the nuclei. Purposefully reducing a particular set of factor binding activities in stimulated T cells using pharmacological agents cyclosporin A or forskolin also abolished all interactions. The results suggest that a combinatorial and coordinated protein-DNA interaction is required for IL-2 gene activation. The thymocyte experiments clearly illustrated that multiple transcription factors are regulated during intrathymic T-cell development, and this regulation in tum controls the inducibility of the lineage-specific IL-2 gene. The in vivo study of protein-DNA interaction stressed the combinatorial action of transcription factors to stably occupy the IL-2 promoter and to initiate its transcription, and provided a molecular mechanism for changes in IL-2 gene inducibility in T cells undergoing integration of multiple environmental signals.
Resumo:
The compound eye of Drosophila melanogaster begins to differentiate during the late third larval instar in the eye-antennal imaginal disc. A wave of morphogenesis crosses the disc from posterior to anterior, leaving behind precisely patterned clusters of photoreceptor cells and accessory cells that will constitute the adult ommatidia of the retina. By the analysis of genetically mosaic eyes, it appears that any cell in the eye disc can adopt the characteristics of any one of the different cell types found in the mature eye, including photoreceptor cells and non-neuronal accessory cells such as cone cells. Therefore, cells within the prospective retinal epithelium assume different fates presumably via information present in the environment. The sevenless^+ (sev^+) gene appears to play a role in the expression of one of the possible fates, since the mutant phenotype is the lack of one of the pattern elements, namely, photoreceptor cell R7. The sev^+ gene product had been shown to be required during development of the eye, and had also been shown in genetic mosaics to be autonomous to presumptive R7. As a means of better understanding the pathway instructing the differentiation R7, the gene and its protein product were characterized.
The sev+ gene was cloned by P-element transposon tagging, and was found to encode an 8.2 kb transcript expressed in developing eye discs and adult heads. By raising monoclonal antibodies (MAbs) against a sev^+- β-galactosidase fusion protein, the expression of the protein in the eye disc was localized by immuno-electronmicroscopy. The protein localizes to the apical cell membranes and microvilli of cells in the eye disc epithelium. It appears during development at a time coincident with the initial formation of clusters, and in all the developing photoreceptors and accessory cone cells at a time prior to the overt differentiation of R7. This result is consistent with the pluripotency of cells in the eye disc. Its localization in the membranes suggests that it may receive information directing the development of R7. Its localization in the apical membranes and microvilli is away from the bulk of the cell contacts, which have been cited as a likely regions for information presentation and processing. Biochemical characterization of the sev^+ protein will be necessary to describe further its role in development.
Other mutations in Drosophila have eye phenotypes. These were analyzed to find which ones affected the initial patterning of cells in the eye disc, in order to identify other genes, like sev, whose gene products may be involved in generating the pattern. The adult eye phenotypes ranged from severe reduction of the eye, to variable numbers of photoreceptor cells per ommatidium, to sub de defects in the organization of the supporting cells. Developing eye discs from the different strains were screened using a panel of MAbs, which highlight various developmental stages. Two identified matrix elements in and anterior to the furrow, while others identified the developing ommatidia themselves, like the anti-sev MAb. Mutation phenotypes were shown to appear at many stages of development. Some mutations seem to affect the precursor cells, others, the setting up of the pattern, and still others, the maintenance of the pattern. Thus, additional genes have now been identified that may function to support the development of a complex pattern.
Resumo:
A composite stock of alkaline gabbro and syenite is intrusive into limestone of the Del Carmen, Sue Peake and Santa Elena Formations at the northwest end of the Christmas Mountains. There is abundant evidence of solution of wallrock by magma but nowhere are gabbro and limestone in direct contact. The sequence of lithologies developed across the intrusive contact and across xenoliths is gabbro, pyroxenite, calc-silicate skarn, marble. Pyroxenite is made up of euhedral crystals of titanaugite and sphene in a leucocratic matrix of nepheline, Wollastonite and alkali feldspar. The uneven modal distribution of phases in pyroxenite and the occurrence' of nepheline syenite dikes, intrusive into pyroxenite and skarn, suggest that pyroxenite represents an accumulation of clinopyroxene "cemented" together by late-solidifying residual magma of nepheline syenite composition. Assimilation of limestone by gabbroic magma involves reactions between calcite and magma and/or crystals in equilibrium with magma and crystallization of phases in which the magma is saturated, to supply energy for the solution reaction. Gabbroic magma was saturated with plagioclase and clinopyroxene at the time of emplacement. The textural and mineralogic features of pyroxenite can be produced by the reaction 2( 1-X) CALCITE + ANXABl-X = (1-X) NEPHELINE+ 2(1-X) WOLLASTONITE+ X ANORTHITE+ 2(1-X) CO2. Plagioclase in pyroxenite has corroded margins and is rimmed by nepheline, suggestive of resorption by magma. Anorthite and wollastonite enter solid solution in titanaugite. For each mole of calcite dissolved, approximately one mole of clinopyroxene was crystallized. Thus the amount of limestone that may be assimilated is limited by the concentration of potential clinopyroxene in the magma. Wollastonite appears as a phase when magma has been depleted in iron and magnesium by crystallization of titanaugite. The predominance of mafic and ultramafic compositions among contaminated rocks and their restriction to a narrow zone along the intrusive contact provides little evidence for the generation of a significant volume of desilicated magma as a result of limestone assimilation.
Within 60 m of the intrusive contact with the gabbro, nodular chert in the Santa Elena Limestone reacted with the enveloping marble to form spherical nodules of high-temperature calc-silicate minerals. The phases wollastonite, rankinite, spurrite, tilleyite and calcite, form a series of sharply-bounded, concentric monomineralic and two-phase shells which record a step-wise decrease in silica content from the core of a nodule to its rim. Mineral zones in the nodules vary 'with distance from the gabbro as follows:
0-5 m CALCITE + SPURRITE + RANKINITE + WOLLASTONITE
5-16 m CALCITE + TILLEYITE ± SPURRITE + RANKINITE + WOLLASTONITE
16-31 m CALCITE + TILLEYITE + WOLLASTONITE
31-60 m CALCITE + WOLLASTONITE
60-plus CALCITE + QUARTZ
The mineral of a one-phase zone is compatible with the phases bounding it on either side but these phases are incompatible in the same volume of P-T-XCO2.
Growth of a monomineralio zone is initiated by reaction between minerals of adjacent one-phase zones which become unstable with rising temperature to form a thin layer of a new single phase that separates the reactants and is compatible with both of them. Because the mineral of the new zone is in equilibrium with the phases at both of its contacts, gradients in the chemical potentials of the exchangeable components are established across it. Although zone boundaries mark discontinuities in the gradients of bulk composition, two-phase equilibria at the contacts demonstrate that the chemical potentials are continuous. Hence, Ca, Si and CO2 were redistributed in the growing nodule by diffusion. A monomineralic zone grows at the expense of an adjacent zone by reaction between diffusing components and the mineral of the adjacent zone. Equilibria between two phases at zone boundaries buffers the chemical potentials of the diffusing species. Thus, within a monomineralic zone, the chemical potentials of the diffusing components are controlled external to the local assemblage by the two-phase equilibria at the zone boundaries.
Mineralogically zoned calc-silicate skarn occurs as a narrow band that separates pyroxenite and marble along the intrusive contact and forms a rim on marble xenoliths in gabbro. Skarn consists of melilite or idocrase pseudomorphs of melili te, one or two . stoichiometric calcsilicate phases and accessory Ti-Zr garnet, perovskite and magnetite. The sequence of mineral zones from pyroxenite to marble, defined by a characteristic calc-silicate, is wollastonite, rankinite, spurrite, calcite. Mineral assemblages of adjacent skarn zones are compatible and the set of zones in a skarn band defines a facies type, indicating that the different mineral assemblages represent different bulk compositions recrystallized under identical conditions. The number of phases in each zone is less than the number that might be expected to result from metamorphism of a general bulk composition under conditions of equilibrium, trivariant in P, T and uCO2. The "special" bulk composition of each zone is controlled by reaction between phases of the zones bounding it on either side. The continuity of the gradients of composition of melilite and garnet solid solutions across the skarn is consistent with the local equilibrium hypothesis and verifies that diffusion was the mechanism of mass transport. The formula proportions of Ti and Zr in garnet from skarn vary antithetically with that of Si Which systematically decreases from pyroxenite to marble. The chemical potential of Si in each skarn zone was controlled by the coexisting stoichiometric calc-silicate phases in the assemblage. Thus the formula proportion of Si in garnet is a direct measure of the chemical potential of Si from point to point in skarn. Reaction between gabbroic magma saturated with plagioclase and clinopyroxene produced nepheline pyroxenite and melilite-wollastonite skarn. The calcsilicate zones result from reaction between calcite and wollastonite to form spurrite and rankinite.
Resumo:
Signal recognition particle (SRP) and signal recognition particle receptor (SR) are evolutionarily conserved GTPases that deliver secretory and membrane proteins to the protein-conducting channel Sec61 complex in the lipid bilayer of the endoplasmic reticulum in eukaryotes or the SecYEG complex in the inner membrane of bacteria. Unlike the canonical Ras-type GTPases, SRP and SR are activated via nucleotide-dependent heterodimerization. Upon formation of the SR•SRP targeting complex, SRP and SR undergo a series of discrete conformational changes that culminate in their reciprocal activation and hydrolysis of GTP. How the SR•SRP GTPase cycle is regulated and coupled to the delivery of the cargo protein to the protein-conducting channel at the target membrane is not well-understood. Here we examine the role of the lipid bilayer and SecYEG in regulation of the SRP-mediated protein targeting pathway and show that they serve as important biological cues that spatially control the targeting reaction.
In the first chapter, we show that anionic phospholipids of the inner membrane activate the bacterial SR, FtsY, and favor the late conformational states of the targeting complex conducive to efficient unloading of the cargo. The results of our studies suggest that the lipid bilayer acts as a spatial cue that weakens the interaction of the cargo protein with SRP and primes the complex for unloading its cargo onto SecYEG.
In the second chapter, we focus on the effect of SecYEG on the conformational states and activity of the targeting complex. While phospholipids prime the complex for unloading its cargo, they are insufficient to trigger hydrolysis of GTP and the release of the cargo from the complex. SecYEG modulates the conformation of the targeting complex and triggers the GTP hydrolysis from the complex, thus driving the targeting reaction to completion. The results of this study suggest that SecYEG is not a passive recipient of the cargo protein; rather, it actively releases the cargo from the targeting complex. Together, anionic phospholipids and SecYEG serve distinct yet complementary roles. They spatially control the targeting reaction in a sequential manner, ensuring efficient delivery and unloading of the cargo protein.
In the third chapter, we reconstitute the transfer reaction in vitro and visualize it in real time. We show that the ribosome-nascent chain complex is transferred to SecYEG via a stepwise mechanism with gradual dissolution and formation of the contacts with SRP and SecYEG, respectively, explaining how the cargo is kept tethered to the membrane during the transfer and how its loss to the cytosol is avoided.
In the fourth chapter, we examine interaction of SecYEG with secretory and membrane proteins and attempt to address the role of a novel insertase YidC in this interaction. We show that detergent-solubilized SecYEG is capable of discriminating between the nascent chains of various lengths and engages a signal sequence in a well-defined conformation in the absence of accessory factors. Further, YidC alters the conformation of the signal peptide bound to SecYEG. The results described in this chapter show that YidC affects the SecYEG-nascent chain interaction at early stages of translocation/insertion and suggest a YidC-facilitated mechanism for lateral exit of transmembrane domains from SecYEG into the lipid bilayer.
Resumo:
A expansão rápida da maxila cirurgicamente assistida tornou-se amplamente utilizada e muito aceitável no tratamento da deficiência maxilar de pacientes adolescentes e adultos. Diversas técnicas cirúrgicas foram propostas ao longo dos anos com o objetivo de solucionar este problema de forma eficiente, com estabilidade dos resultados e baixa morbidade. Controvérsias em relação ao procedimento cirúrgico persistem, principalmente relacionadas a quais osteotomias devem ser realizadas para se obter bons resultados. O objetivo deste trabalho foi avaliar os resultados da expansão ortocirúrgica da maxila realizando osteotomias nas paredes laterais da maxila e na sutura palatina mediana. Foram selecionados dezessete pacientes adultos portadores de deficiência transversa maxilar, com média de idade de 24 anos e 8 meses; todos foram submetidos a exames de tomografia computadorizada convencional e moldagens maxilares previamente ao procedimento cirúrgico e após três meses, no mínimo, do término de ativação e estabilização do aparelho expansor. As medidas do pós-cirúrgico foram confrontadas com as do pré-cirúrgico e os resultados foram comparados e analisados estatisticamente. Foi obtida a expansão desejada clinicamente em todos os pacientes. No entanto, a quantidade de expansão na região de molares foi estatisticamente maior nas áreas referentes aos dentes, enquanto que os resultados obtidos referentes aos caninos se mostraram similares nas três regiões maxilares avaliadas. Quando comparadas às regiões de caninos e molares entre si, a expansão intercaninos foi maior na altura dos forames palatinos e o inverso ocorreu nas regiões de processo alveolar e dentária, nas quais a expansão intermolar foi maior.