874 resultados para Access networks


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in WiFi networks and throughput efficiency degradation, densely deployed WiFi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to efficiently utilize scarce spectrum resources, by matching physical layer resources to traffic demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks. This approach, named SFCA (Sub-carrier Fine-grained Channel Access), adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a sub-carrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency. The MAC layer uses a frequency-time domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA (an established access scheme) showing significant outperformance. Finally we present results for next generation 802.11ac WiFi networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-03

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primera conferencia. Bibliotecas y Repositorios Digitales: Gestión del Conocimiento, Acceso Abierto y Visibilidad Latinoamericana. (BIREDIAL) Mayo 9 al 11 de 2011. Bogotá, Colombia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose an enhanced relay-enabled distributed coordination function (rDCF) for wireless ad hoc networks. The idea of rDCF is to use high data rate nodes to work as relays for the low data rate nodes. The relay helps to increase the throughput and lower overall blocking time of nodes due to faster dual-hop transmission. rDCF achieves higher throughput over IEEE 802.11 distributed coordination function (DCF). The protocol is further enhanced for higher throughput and reduced energy. These enhancements result from the use of a dynamic preamble (i.e. using short preamble for the relay transmission) and also by reducing unnecessary overhearing (by other nodes not involved in transmission). We have modeled the energy consumption of rDCF, showing that rDCF provides an energy efficiency of 21.7% at 50 nodes over 802.11 DCF. Compared with the existing rDCF, the enhanced rDCF (ErDCF) scheme proposed in this paper yields a throughput improvement of 16.54% (at the packet length of 1000 bytes) and an energy saving of 53% at 50 nodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Open access philosophy applied by regulatory agencies may lead to a scenario where captive consumers will solely face the responsibility on distribution network's losses even with Independent Energy Producers (also known as Distributed Generation) and Independent Energy Consumers connected to the system. This work proposes the utilization of a loss allocation method in distribution systems where open access is allowed, in which cross-subsidies, that appear due to the influence the generators have over the system losses, are minimized. Thus, guaranteeing to some extent the efficiency and transparency of the economic signals of the market. Results obtained through the Zbus loss allocation method adapted for distribution networks are processed in such a way that the corresponding allocation to the generation buses is divided among the consumer buses, while still considering consumers spatial characteristics. © 2007 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Localization is information of fundamental importance to carry out various tasks in the mobile robotic area. The exact degree of precision required in the localization depends on the nature of the task. The GPS provides global position estimation but is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras are commonly used for position estimation, but these require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of vision. Currently, Wireless Networks (WN) are widely available in indoor environments and can allow efficient global localization that requires relatively low computing resources. However, the inherent instability in the wireless signal prevents it from being used for very accurate position estimation. The growth in the number of Access Points (AP) increases the overlap signals areas and this could be a useful means of improving the precision of the localization. In this paper we evaluate the impact of the number of Access Points in mobile nodes localization using Artificial Neural Networks (ANN). We use three to eight APs as a source signal and show how the ANNs learn and generalize the data. Added to this, we evaluate the robustness of the ANNs and evaluate a heuristic to try to decrease the error in the localization. In order to validate our approach several ANNs topologies have been evaluated in experimental tests that were conducted with a mobile node in an indoor space.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Existing wireless systems are normally regulated by a fixed spectrum assignment strategy. This policy leads to an undesirable situation that some systems may only use the allocated spectrum to a limited extent while others have very serious spectrum insufficiency situation. Dynamic Spectrum Access (DSA) is emerging as a promising technology to address this issue such that the unused licensed spectrum can be opportunistically accessed by the unlicensed users. To enable DSA, the unlicensed user shall have the capability of detecting the unoccupied spectrum, controlling its spectrum access in an adaptive manner, and coexisting with other unlicensed users automatically. In this article, we propose a radio system Transmission Opportunity-based spectrum access control protocol with the aim to improve spectrum access fairness and ensure safe coexistence of multiple heterogeneous unlicensed radio systems. In the scheme, multiple radio systems will coexist and dynamically use available free spectrum without interfering with licensed users. Simulation is carried out to evaluate the performance of the proposed scheme with respect to spectrum utilisation, fairness and scalability. Comparing with the existed studies, our strategy is able to achieve higher scalability and controllability without degrading spectrum utilisation and fairness performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A regenerative all-optical grooming switch for interconnecting 130 Gbit/s on-off keying (OOK) metro/core ring and 43 Gbit/s-OOK metro/access ring networks with switching functionality in time, space, and wavelength domains is demonstrated. Key functionalities of the switch are traffic aggregation with time-slot interchanging functionality, optical time division multiplexing (OTDM) to wavelength division multiplexing (WDM) demultiplexing, and multi-wavelength 2R regeneration. Laboratory and field demonstrations show the excellent performance of the new concept with error-free signal transmission and Q-factors above 20 dB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation proposed a self-organizing medium access control protocol (MAC) for wireless sensor networks (WSNs). The proposed MAC protocol, space division multiple access (SDMA), relies on sensor node position information and provides sensor nodes access to the wireless channel based on their spatial locations. SDMA divides a geographical area into space divisions, where there is one-to-one map between the space divisions and the time slots. Therefore, the MAC protocol requirement is the sensor node information of its position and a prior knowledge of the one-to-one mapping function. The scheme is scalable, self-maintaining, and self-starting. It provides collision-free access to the wireless channel for the sensor nodes thereby, guarantees delay-bounded communication in real time for delay sensitive applications. This work was divided into two parts: the first part involved the design of the mapping function to map the space divisions to the time slots. The mapping function is based on a uniform Latin square. A Uniform Latin square of order k = m 2 is an k x k square matrix that consists of k symbols from 0 to k-1 such that no symbol appears more than once in any row, in any column, or in any m x in area of main subsquares. The uniqueness of each symbol in the main subsquares presents very attractive characteristic in applying a uniform Latin square to time slot allocation problem in WSNs. The second part of this research involved designing a GPS free positioning system for position information. The system is called time and power based localization scheme (TPLS). TPLS is based on time difference of arrival (TDoA) and received signal strength (RSS) using radio frequency and ultrasonic signals to measure and detect the range differences from a sensor node to three anchor nodes. TPLS requires low computation overhead and no time synchronization, as the location estimation algorithm involved only a simple algebraic operation.