983 resultados para Acanthoica quattrospina flux
Resumo:
The samples were concentrated down to 50 cm**3 by slow decantation after storage for 20 days in a cool and dark place. The species identification was done under light microscope OLIMPUS-BS41 connected to a video-interactive image analysis system at magnification of the ocular 10X and objective - 40X. A Sedgwick-Rafter camera (1ml) was used for counting. 400 specimen were counted for each sample, while rare and large species were checked in the whole sample (Manual of phytoplankton, 2005). Species identification was mainly after Carmelo T. (1997) and Fukuyo, Y. (2000). Taxon-specific phytoplankton abundance and biomass were analysed by Moncheva S., B. Parr, 2005. Manual for Phytoplankton Sampling and Analysis in the Black Sea. The cell biovolume was determined based on morpho-metric measurement of phytoplankton units and the corresponding geometric shapes as described in detail in (Edier, 1979).
Resumo:
The "MARECHIARA-phytoplankton" dataset contains phytoplankton data collected in the ongoing time-series at Stn MC ( 40°48.5' N, 14°15' E) in the Gulf of Naples. This dataset spans over the period 1984-2006 and contains data of phytoplankton species composition and abundance. Phytoplankton sampling was regularly conducted from January 1984 till July 1991 and in 1995-2006. Sampling was interrupted from August 1991 till January 1995. The sampling frequency was fortnightly till 1991 and weekly since 1995. Phytoplankton samples were collected at 0.5 m depth using Niskin bottles and immediately fixed with formaldehyde (0.8-1.6% final concentration) for species identification and counts.
Resumo:
This data was collected during the 'ICE CHASER' cruise from the southern North Sea to the Arctic (Svalbard) in July-Aug 2008. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.
Resumo:
The distribution of diatoms, coccolithophores and planktic foraminifers mirrored the hydrographic and trophic conditions of the surface ocean (0-100 m) across the upwelling area off the Oman coast to the central Arabian Sea during May/June 1997 and July/August 1995. The number of diatoms was increased in waters with local temperature minimum and enhanced nutrient concentration (nitrate, phosphate, silicate) caused by upwelling. Vegetative cells of Chaetoceros dominated the diatom assemblage in the coastal upwelling area. Towards the more nutrient depleted and stratified surface waters to the southeast, the number of diatoms decreased, coccolithophore and planktic foraminiferal numbers increased, and floral and faunal composition changed. In particular, the transition between the eutrophic upwelling region off Oman and the oligotrophic central Arabian Sea was marked by moderate nutrient concentration, and high coccolithophore and foraminifer numbers. Florisphaera profunda, previously often referred as a 'lower-photic-zone-species', was frequent in water depths as shallow as 20 m, and at high nutrient concentration up to 14 µmol NO3/l and 1.2 µmol PO4/. To the oligotrophic southeast of the divergence, cell densities of coccolithophores declined and Umbellosphaera irregularis prevailed throughout the water column down to 100 m depth. In general, total coccolithophore numbers were limited by nutrient threshold concentration, with low numbers (<10*10**3 cells/l) at high [NO3] and [PO4], and high numbers (>70*10**3 cells/l) at low [NO3] and [PO4]. The components of the complex microplankton succession, diatoms, coccoliths and planktic foraminifers (and possibly others), should ideally be used as a combined paleoceanographic proxy. Consequently, models on plankton ecology should be resolved at least for the seasonality, to account for the bias of paleoceanographic transfer calculations.
Resumo:
Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2·h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2·h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.