928 resultados para Absolute, The.
Resumo:
The upconversion quantum yield (UCQY) is one of the most significant parameters for upconverter materials. A high UCQY is essential for a succesful integration of upconversion in many applications, such as harvesting of the solar radiation. However, little is known about which doping level of the rare-earth ions yields the highest UCQY in the different host lattices and what are the underlying causes. Here, we investigate which Er3+ doping yields the highest UCQY in the host lattices β-NaYF4 and Gd2O2S under 4I15/2 → 4I13/2 excitation. We show for both host lattices that the optimum Er3+ doping is not fixed and it actually decreases as the irradiance of the excitation increases. To find the optimum Er3+ doping for a given irradiance, we determined the peak position of the internal UCQY as a function of the average Er−Er distance. For this purpose, we used a fit on experimental data, where the average Er−Er distance was calculated from the Er3+ doping of the upconverter samples and the lattice parameters of the host materials. We observe optimum average Er−Er distances for the host lattices β-NaYF4 and Gd2O2S with differences <14% at the same irradiance levels, whereas the optimum Er3+ doping are around 2× higher for β-NaYF4 than for Gd2O2S. Estimations by extrapolation to higher irradiances indicate that the optimum average Er−Er distance converges to values around 0.88 and 0.83 nm for β-NaYF4 and Gd2O2S, respectively. Our findings point to a fundamental relationship and focusing on the average distance between the active rare-earth ions might be a very efficient way to optimize the doping of rare-earth ions with regard to the highest achievable UCQY.
Resumo:
Prospective memory is the ability to remember an intention at an appropriate moment in the future. Prospective memory tasks can be more or less important. Previously, importance was manipulated by emphasizing the importance of the prospective memory task relative to the ongoing task it was embedded in. This resulted in better prospective memory performance but also ongoing task costs. In the present study, we simply instructed one group of participants that the prospective memory task was important (i.e., absolute importance instruction) and compared them to a group with relative importance instructions and a control group. The results showed that absolute importance lead to an increase in prospective memory performance without enhancing ongoing task costs, whereas relative importance resulted in both increased prospective memory performance and ongoing task costs. Thus, prospective memory can be enhanced without ongoing task costs, which is particularly crucial for safety-work contexts.