992 resultados para AZ91 magnesium alloys


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-pressure die-cast (HPDC) Mg-4Al-4RE-0.4Mn (RE = La, Ce) magnesium alloys were prepared and their microstructures, tensile properties, and creep behavior have been investigated in detail. The results show that two binary Al-Ce phases, Al11Ce3 and Al2Ce, are formed mainly along grain boundaries in Mg-4Al-4Ce-0.4Mn alloy, while the phase composition of Mg-4Al-4La-0.4Mn alloy contains only alpha-Mg and Al11La3. The Al11La3 phase comprises large coverage of the grain boundary region and complicated morphologies. Compared with Al11Ce3 phase, the higher volume fraction and better thermal stability of Al11La3 have resulted in better-fortified grain boundaries of the Mg-4Al-4La-0.4Mn alloy. Thus higher tensile strength and creep resistance could be obtained in Mg-4Al-4La-0.4Mn alloy in comparison with that of Mg-4Al-4Ce-0.4Mn. Results of the theoretical calculation that the stability of Al11La3 is the highest among four Al-RE intermetallic compounds supports the experimental results further.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new process for the preparation and surface modification of submicron YAl2 intermetallic particles was proposed to control the agglomeration of ultrafine YAl2 particles and interface in the fabrication of YAl2p/MgLiAl composites. The morphological and structural evolution during mechanical milling of YAl2 powders (< 30 μm) with magnesium particles (~ 100 μm) has been characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that YAl2 particles are refined to submicron scale and separately cladded in magnesium coatings after mixed milling with magnesium particles for 20 h. Mechanical and metallurgical bonds have been found in YAl2/Mg interfaces without any interface reactions. Both the refining and mechanical activation efficiencies for YAl2 particles are enhanced, which may be related to the addition of magnesium particles leading to atomic solid solution and playing a role as “dispersion stabilizer”.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MAGNESIUM ALLOYS have strong potential for weight reduction in a wide range of technical applications because of their low density compared to other structural metallic materials. Therefore, an extensive growth of magnesium alloys usage in the automobile sector is expected in the coming years to enhance the fuel efficiency through mass reduction. The drawback associated with the use of commercially cheaper Mg-Al based alloys, such as AZ91, AM60 and AM50 are their inferior creep properties above 100ºC due to the presence of discontinuous Mg17A112 phases at the grain boundaries. Although rare earth-based magnesium alloys show better mechanical properties, it is not economically viable to use these alloys in auto industries. Recently, many new Mg-Al based alloy systems have been developed for high temperature applications, which do not contain the Mg17Al12 phase. It has been proved that the addition of a high percentage of zinc (which depends upon the percentage of Al) to binary Mg-Al alloys also ensures the complete removal of the Mg17Al12 phase and hence exhibits superior high temperature properties.ZA84 alloy is one such system, which has 8%Zn in it (Mg-8Zn-4Al-0.2Mn, all are in wt %) and shows superior creep resistance compared to AZ and AM series alloys. These alloys are mostly used in die casting industries. However, there are certain large and heavy components, made up of this alloy by sand castings that show lower mechanical properties because of their coarse microstructure. Moreover, further improvement in their high temperature behaviour through microstructural modification is also an essential task to make this alloy suitable for the replacement of high strength aluminium alloys used in automobile industry. Grain refinement is an effective way to improve the tensile behaviour of engineering alloys. In fact, grain refinement of Mg-Al based alloys is well documented in literature. However, there is no grain refiner commercially available in the market for Mg-Al alloys. It is also reported in the literature that the microstructure of AZ91 alloy is modified through the minor elemental additions such as Sb, Si, Sr, Ca, etc., which enhance its high temperature properties because of the formation of new stable intermetallics. The same strategy can be used with the ZA84 alloy system to improve its high temperature properties further without sacrificing the other properties. The primary objective of the present research work, “Studies on grain refinement and alloying additions on the microstructure and mechanical properties of Mg-8Zn-4Al alloy” is twofold: 1. To investigate the role of individual and combined additions of Sb and Ca on the microstructure and mechanical properties of ZA84 alloy. 2. To synthesis a novel Mg-1wt%Al4C3 master alloy for grain refinement of ZA84 alloy and investigate its effects on mechanical properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A semianalytical Sachs-type equation for the flow stress of magnesium-base alloys is developed using the Schmid law, power law hardening, and a sigmoidal increase in the twinning volume fraction with strain. Average Schmid factors were estimated from electron backscattered diffraction (EBSD) data. With these, the equation provides a reasonable description of the flow curves obtained in compression and tension for samples of Mg-3Al-1Zn cut in different orientations from rolled plate. The model illustrates the general importance of basal slip and twinning in magnesium alloys. The significance of prismatic slip in room temperature tension testing is also highlighted. This is supported with EBSD slip line trace analysis and rationalized in terms of a possible sensitivity of the critical resolved shear stress for prismatic (cross) slip to the stress on the basal plane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite the high demand for industrial applications of magnesium, the forming technology for wrought magnesium alloys is not fully developed due to the limited ductility and high sensitivity to the processing parameters. The processing window for magnesium alloys could be significantly widened if the lower-bound ductility (LBD) for a range of stresses, temperature, and strain rates was known. LBD is the critical strain at the moment of fracture as a function of stress state and temperature. Measurements of LBD are normally performed by testing in a hyperbaric chamber, which is highly specialized, complex, and rare equipment. In this paper an alternative approach to determine LBD is demonstrated using wrought magnesium alloy AZ31 as an example. A series of compression tests of bulge specimens combined with finite element simulation of the tests were performed. The LBD diagram was then deduced by backward calculation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper examines the development of grain size during the recrystallization of magnesium alloys and the influence the grain size has on the mechanical response. In magnesium alloys grain refinement improves the strength-ductility balance. This simultaneous increase in both strength and ductility is ascribed to the impact the grain size has on deformation twinning. The mechanisms by which the grain size is established during hot working are shown to be conventional dynamic recrystallization followed by post-dynamic recrystallization. The role of alloying additionon both of these reactions is briefly considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recent trial investigated the effect of solidification grain refinement of billet on the grain refinement and properties of alloy ZM20. It was found that even at levels of 0.4Mn, significant grain refinement could be obtained when 0.7Zr was added. At 0.2Mn grain sizes as low as 60μm were
obtained. Billets of Mg-2Zn-0.2Mn with four different grain sizes, due to different Zr and cooling rates were then cast via vertical direct chill casting and extruded conventionally. Benefits of grain refinement of the billet on extrusion were found to be a slight increase in the size of the operating
window, and a reduction of the grain size in the extrudate. However, the effect of the reduction in extrudate grain size due to refinement of the billet was small compared with the amount of grain refinement obtained due to recrystallisation on extrusion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microstructure and mechanical response of three extruded magnesium alloys, Mg-3Al-1Zn (AZ31), Mg-1.5Mn (Ml) and Mg-lMn-0.4RE (ME10) are examined. The tensile yield strength of ME10 was nearly half that of AZ31 and Ml. The tensile elongations were 6%, 11% and 19% for Ml, AZ31 and ME10, respectively. This range of properties is large and is attributed to the unique extrusion texture produced in ME10, and the high density of fine particles in Ml.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work examines the microstructure that evolves during the annealing of hot worked magnesium alloy AZ31. First, the influences of deformation and annealing conditions on the microstructures are assessed. It is found that the annealing behaviour is consistent with what one would expect for a recrystallization type reaction. Whilst both the deformation and annealing conditions influence the time required to reach a stable annealed microstructure, the grain size attained is governed solely by the prior deformation conditions employed. At the highest temperature and strain rate examined, the rate of recrystallization is quite high and the grain size was found to be approximately double when annealed for only 1 s prior to quenching. Finally, semi-empirical equations are developed to predict the kinetics of recrystallization, as well as the evolution of grain size, during annealing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The energy absorbed by magnesium alloys (high-pressure die-cast (HPDC) AM20, AM50, AM60, and extruded AZ31) in a buckling test was significantly greater than the aluminum alloy 6061 T6 and particularly mild steel of a similar weight, but was less than that of the aluminum alloy and steel for the same thickness (Figure 6).26 This indicates that mass savings can be achieved by the substitution with magnesium alloys to achieve similar energy-absorbing characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mechanical properties of open-cellular magnesium alloys with three types of
geometric cell-structures, that is, a random round cell-structure (type A). a controlled diamond cell-structure for which the angle between the struts and the load direction is 45 degree (type B) and a controlled square cell-structure for which the angle between the struts and the loading direction is 0 degree (90 degree) (type C), are investigated by compressive tests. Results indicate that type C showed a higher collapse stress than the other two types. The collapse mechanism and the effects of the loading direction on collapse stress for the three types of magnesium alloys arc discussed from the viewpoint of bending, buckling and yielding of the struts. It is suggested that collapse for the open-cellular magnesium aHoys is associated with yielding of struts

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The extrusion behaviour of a series of magnesium alloys was investigated and compared to a common aluminium alloy using limit diagrams. The variation in the limits was related to the different flow stress and solidus temperature of each alloy. The findings of this work have enabled predictions of the relative extrudability of new prototype alloys.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research found changes in the performance (formability) of magnesium alloy sheets with a history of different processes. A key outcome found that the steel sheet metal processing of rolling and heat treatment caused a detrimental effect. The material's internal deformation was found to be linked to the poor formability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The deformation behaviour of the age hardenable alloy Mg–5%Zn after different precipitation treatments has been examined. It has been found that during compressive deformation, fine particles increase the number of twins that form, but reduce the size and total volume fraction of twins. Visco-plastic selfconsistent modelling has been used to show that the presence of precipitates hardens the twin and prismatic slip systems more than the basal slip system. It is proposed that because the {10 ¯12} twin requires basal slip to accommodate the twinning shear, this twin type will always be hardened equal to, or more than, the basal slip system in response to precipitation.