246 resultados para AUTOPHAGY
Resumo:
Objectives: The mechanism by which atheroma plaque becomes unstable is not completely understood to date but analysis of differentially expressed genes in stable versus unstable plaques may provide clues. This will be crucial toward disclosing the mechanistic basis of plaque instability, and may help to identify prognostic biomarkers for ischaemic events. The objective of our study was to identify differences in expression levels of 59 selected genes between symptomatic patients (unstable plaques) and asymptomatic patients (stable plaques). Methods: 80 carotid plaques obtained by carotid endarterectomy and classified as symptomatic (>70% stenosis) or asymptomatic (>80% stenosis) were used in this study. The expression levels of 59 genes were quantified by qPCR on RNA extracted from the carotid plaques obtained by endarterectomy and analyzed by means of various bioinformatic tools. Results: Several genes associated with autophagy pathways displayed differential expression levels between asymptomatic and symptomatic (i.e. MAP1LC3B, RAB24, EVA1A). In particular, mRNA levels of MAP1LC3B, an autophagic marker, showed a 5-fold decrease in symptomatic samples, which was confirmed in protein blots. Immune system-related factors and endoplasmic reticulum-associated markers (i.e. ERP27, ITPR1, ERO1LB, TIMP1, IL12B) emerged as differently expressed genes between asymptomatic and symptomatic patients. Conclusions: Carotid atherosclerotic plaques in which MAP1LC3B is underexpressed would not be able to benefit from MAP1LC3B-associated autophagy. This may lead to accumulation of dead cells at lesion site with subsequent plaque destabilization leading to cerebrovascular events. Identified biomarkers and network interactions may represent novel targets for development of treatments against plaque destabilization and thus for the prevention of cerebrovascular events.
Resumo:
A juçara, Euterpe oleracea Mart., fruta indígena da Amazônia Legal, é rica em fitoquímicos com atividades anti-oxidante, antiinflamatória e anti-câncer. Este estudo tem por objetivo analisar os efeitos do extrato hidroalcoólico da casca, caroço e fruto total da juçara em diferentes linhagens de células malignas humana. Os frutos foram coletados no Parque da Juçara, localizado no Maracanã, município de São Luís, seguida da confecção da excicata que se mantém registrada no Herbário Rosa Mochel do Núcleo de Estudos Biológicos da Universidade Estadual do Maranhão. Os extratos hidroalcoólicos da casca, caroço e fruto total foram extraidos no Laboratório de Farmacologia e Psicobiologia da UERJ. As linhagens celulares utilizadas nos ensaios foram MCF-7 (adenocarcinoma de mama), CACO-2 e HT-20 (adenocarcinoma colo retal) e adenocarcinoma na mama (MDA-MB-468). As linhagens foram tratadas com 10, 20 e 40g/mL dos extratos por 24 e 48 horas e feitas às análises. Células MCF-7 controle apresentaram núcleo proeminente com nucléolos evidentes. Após tratamento com o extrato hidroalcoólico da casca da juçara, as células mostraram morfologia arredondada com retração do citoplasma. O ensaio de viabilidade com MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) demonstrou uma redução na viabilidade das células. Após 48 horas, o tratamento das células com 20g/mL do extrato da casca reduziu a viabilidade sendo que o efeito citotóxico do tratamento com 40g/mL do extrato da casca foi potencializado. Células tratadas com 10g/mL do extrato do caroço de juçara apresentavam-se arredondadas com consequente redução no volume celular. A concentração 20g/mL de extrato hidroalcoólico do caroço, causou severa redução no volume das células e ocasionou o surgimento de vacúolos intracelulares. O mesmo foi observado após tratamento com 40g/mL. O tratamento com 40g/mL do extrato hidroalcoólico do fruto total, modificou drasticamente a morfologia das células MCF-7 causando vacuolização e aparente lise com perda do conteúdo citoplasmático e o ensaio da viabilidade com MTT demonstrou redução na viabilidade das células MCF-7 tratadas com 20 e 40g/mL após 24 horas de tratamento. Análises por MET (Microscopia Eletrônica de Transmissão) demonstraram o surgimento de vesículas autofágicas, cuja comprovação deu-se com a identificação da expressão da proteína LC3BII na membrana do autofagossoma pela técnica de Western Blotting. Mediante o demonstrado pelos experimentos, com as linhagens MCF-7 e MDA-MB-468, confirma-se que as frações isoladas do extrato do caroço da juçara, promove modificações celulares indicativas de autofagia a partir de 10g/mL, em 24 horas. O núcleo permaneceu íntegro, não apresentando características de núcleo apoptótico. Os dados são conclusivos para ocorrência de morte celular por autofagia em linhagem celulares de carcinoma de mama MCF-7 quando tratadas com extrato hidroalcoólico da casca, caroço e fruto total da juçara do Maranhão, agente quimiopreventivo no câncer de mama estrogênio-dependente.
Resumo:
We recently generated a knock-in mouse model (PYGM p.R50X/p.R50X) of McArdle disease (myophosphorylase deficiency). One mechanistic approach to unveil the molecular alterations caused by myophosphorylase deficiency, which is arguably the paradigm of 'exercise intolerance', is to compare the skeletal-muscle tissue of McArdle, heterozygous, and healthy (wild type (wt)) mice. We analyzed in quadriceps muscle of p.R50X/p.R50X (n=4), p.R50X/wt (n=6) and wt/wt mice (n=5) (all male, 8 wk-old) molecular markers of energy-sensing pathways, oxidative phosphorylation (OXPHOS) and autophagy/proteasome systems, oxidative damage and sarcoplamic reticulum (SR) Ca handling. We found a significant group effect for total AMPK (tAMPK) and ratio of phosphorylated (pAMPK)/tAMPK (P=0.012 and 0.033), with higher mean values in p.R50X/p.R50X mice vs. the other two groups. The absence of massive accumulation of ubiquitinated proteins, autophagosomes or lysosomes in p.R50X/p.R50X mice suggested no major alterations in autophagy/proteasome systems. Citrate synthase activity was lower in p.R50X/p.R50X mice vs. the other two groups (P=0.036) but no statistical effect existed for respiratory chain complexes. We found higher levels of 4-hydroxy-2-nonenal-modified proteins in p.R50X/p.R50X and p.R50X/wt mice compared with the wt/wt group (P=0.011). Sarco(endo)plasmic reticulum ATPase 1 (SERCA1) levels detected at 110kDa tended to be higher in p.R50X/p.R50X and p.R50X/wt mice compared with wt/wt animals (P=0.076), but their enzyme activity was normal. We also found an accumulation of phosphorylated SERCA1 in p.R50X/p.R50X animals. Myophosphorylase deficiency causes alterations in sensory energetic pathways together with some evidence of oxidative damage and alterations in Ca handling but with no major alterations in OXPHOS capacity or autophagy/ubiquitination pathways, which suggests that the muscle tissue of patients is likely to adapt overall favorably to exercise training interventions.
Resumo:
Wydział Biologii: Instytut Biologii Molekularnej i Biotechnologii Zakład Genetyki Molekularnej Człowieka
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Cystinosis is a multi-system autosomal recessive disorder caused by mutations and/or deletions in both alleles of CTNS, a gene encoding for the low pH dependent lysosomal cystine exporter cystinosin. Cystinosis occurs in approximately 1:200,000 newborns worldwide and is characterised by an accumulation of cystine in the lysosomes. The most severe form of the disorder is nephropathic cystinosis presenting Fanconi syndrome and leads without treatment to an end-stage renal failure before the age of ten. The only treatment available so far is cysteamine therapy, which delays disease progression by five years, but does not provide a cure for cystinosis patients. Current gene and cell based therapeutic approaches have not yet provided a suitable alternative. A potentially approach for a long-term treatment could be to generate autologous gene–modified stem cells by repairing the gene. Zinc Finger Nucleases (ZFNs) serve as a tool to increase HDR up to a 200,000-fold by introducing a double-stranded break (DSB). Thus, simple mutations in the CTNS gene could be corrected by introduction of a double-stranded break using ZFNs to boost the process of HDR with a suitable donor DNA sequence. A permanent repair of the most common lesion CTNS, a 57 kb deletion, could be achieved by ZFN-mediated HDR using a minigene CTNS promoter/cDNA construct. The thesis describes the design and testing of seven zinc finger nuclease pairs for their cleavage activity in vitro and in cellulo.. A highly sensitive assay to detect even low levels of ZFN-mediated HDR was also developed. Finally, to further investigate the role of autophagy in tissue injury in cystinotic cells an assay to monitor autophagy levels in the cells was successfully developed. This assay provides the opportunity to demonstrate functional restoration of CTNS after successful ZFN-HDR in cystinotic cells.
Resumo:
PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.
Resumo:
Inflammatory bowel diseases (IBD), encompasses a range of chronic, immune-mediated inflammatory disorders that are usually classified under two major relapsing conditions, Crohn’s Disease (CD) and ulcerative colitis (UC). Extensive studies in the last decades have suggested that the etiology of IBD involves environmental and genetic factors that lead to dysfunction of epithelial barrier with consequent deregulation of the mucosal immune system and inadequate responses to gut microbiota.Over the last decade, the microbial species that has attracted the most attention, with respect to CD etiology, is Eschericia coli. In CD tissue, E. coli antigens have also been identified in macrophages within the lamina propria, granulomas, and in the germinal centres of mesenteric lymph nodes of patients. They have been shown to adhere to and invade intestinal epithelial cells whilst also being able to extensively replicate within macrophages. Through the work of genome-wide association studies (GWAS), there is growing evidence to suggest that the microbial imbalance between commensal and pathogenic bacteria in the gut is aided by a defect in the innate immune system. Autophagy represents a recently investigated pathway that is believed to contribute to the pathogenesis of CD, with studies identified a variant of the autophagy gene, ATG16L1, as a susceptibility gene. The aim of my thesis was to study the cellular and molecular mechanism promoted by E.coli strains in epithelial cells and to assess their contribution to IBD pathology. To achieve this we focused on developing both an in vitro and in vivo model of AIEC infection. This allowed us to further our knowledge on possible mechanisms utilised by AIEC that promoted their survival, as well as developing a better understanding of host reactions. We demonstrate a new survival mechanism promoted by E.coli HM605, whereby it induces the expression of the anti-apoptotic proteins Bcl-XL and BCL2, all of which is exacerbated in an autophagy deficient system. We have also demonstrated the presence of AIEC-induced inflammasome responses in epithelial cells which are exacerbated in an autophagy deficient system and expression of NOD-like receptors (NLRs) which might mediate inflammasome responses in vivo. Finally, we used the Citrobacter rodentium model of infectious colitis to identify Pellino3 as an important mediator in the NOD2 pathway and regulator of intestinal inflammation. In summary, we have developed robust and versatile models of AIEC infection as well as provide new insights into AIEC mediated survival pathways. The collected data provides a new perception into why AIEC bacteria are able to prosper in conditions associated with Crohn’s disease patients with a defect in autophagy.
Resumo:
VCP (VCP/p97) is a ubiquitously expressed member of the AAA(+)-ATPase family of chaperone-like proteins that regulates numerous cellular processes including chromatin decondensation, homotypic membrane fusion and ubiquitin-dependent protein degradation by the proteasome. Mutations in VCP cause a multisystem degenerative disease consisting of inclusion body myopathy, Paget disease of bone, and frontotemporal dementia (IBMPFD). Here we show that VCP is essential for autophagosome maturation. We generated cells stably expressing dual-tagged LC3 (mCherry-EGFP-LC3) which permit monitoring of autophagosome maturation. We determined that VCP deficiency by RNAi-mediated knockdown or overexpression of dominant-negative VCP results in significant accumulation of immature autophagic vesicles, some of which are abnormally large, acidified and exhibit cathepsin B activity. Furthermore, expression of disease-associated VCP mutants (R155H and A232E) also causes this autophagy defect. VCP was found to be essential to autophagosome maturation under basal conditions and in cells challenged by proteasome inhibition, but not in cells challenged by starvation, suggesting that VCP might be selectively required for autophagic degradation of ubiquitinated substrates. Indeed, a high percentage of the accumulated autophagic vesicles contain ubiquitin-positive contents, a feature that is not observed in autophagic vesicles that accumulate following starvation or treatment with Bafilomycin A. Finally, we show accumulation of numerous, large LAMP-1 and LAMP-2-positive vacuoles and accumulation of LC3-II in myoblasts derived from patients with IBMPFD. We conclude that VCP is essential for maturation of ubiquitin-containing autophagosomes and that defect in this function may contribute to IBMPFD pathogenesis.
Resumo:
Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.
To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.
I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.
Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.
Resumo:
Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.
Resumo:
Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI(3) P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock- down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.
Resumo:
Background: The interleukin 10 knockout mouse (IL10-KO) is a model of human inflammatory bowel disease (IBD) used to Study host microbial interactions and the action of potential therapeutics. Using Affymetrix data analysis, important signaling pathways and transcription factors relevant to gut inflammation and antiinflammatory probiotics were identified.
Methods: Affymetrix microarray analysis on both wildtype (WT) and IL10-KO mice orally administered with and without the probiotic VSL#3 was performed and the results validated by real-time polymerase chain reaction (PCR), immunocytochemistry, proteomics, and histopathology. Changes in metabolically active bacteria were assessed with denaturing gradient gel electrophoresis (DGGE).
Results: Inflammation in IL10-KO mice was characterized by differential regulation of inflammatory, nuclear receptor, lipid, and xenobiotic signaling pathways. Probiotic intervention resulted in downregulation of CXCL9 (fold change [FC] = -3.98, false discovery rate [FDR] = 0.019), CXCL10 (FC = -4.83, FDR = 0.0008), CCL5 (FC -3.47 FDR = 0.017), T-cell activation (Itgal [FC = -4.72, FDR = 0.00009], Itgae [FC = -2.54 FDR = 0.0044]) and the autophagy gene IRGM (FC = -1.94, FDR = 0.01), a recently identified susceptibility gene in human IBD. Consistent with a marked reduction in integrins, probiotic treatment decreased the number of CCL5+ CD3+ double-positive T Cells and upregulated galectin2, which triggers apoptosis of activated T cells. Importantly, genes associated with lipid and PPAR signaling (PPAR alpha [FC = 2.36, FDR = 0.043], PPARGC1 alpha [FC 2.58, FDR = 0.016], Nrld2 [FC = 3.11, FDR = 0.0067]) were also upregulated. Altered microbial diversity was noted in probiotic-treated mice.
Conclusions: Bioinformatics analysis revealed important immune response. phagocytic and inflammatory pathways dominated by elevation of T-helper cell 1 type (TH1) transcription factors in IL10-KO mice. Probiotic intervention resulted in a site-specific reduction of these pathways but importantly upregulated PPAR, xenobiotic, and lipid signaling genes. potential antagonists of NF-kappa B inflammatory pathways.