908 resultados para AUTOMOTIVE ACESSORIES
Resumo:
With emission legislation becoming ever more stringent, automotive companies are forced to invest heavily into solutions to meet the targets set. To date the most effective way of treating emissions is through the use of catalytic converters. Current testing methods of catalytic converters whether being tested on a vehicle or in a lab reactor can be expensive and offer little information about what is occurring within the catalyst. It is for this reason and the increased price of precious metal that kinetic modelling has become a popular alternative to experimental testing.
Resumo:
The preventive knowledge of serviceability times is a critical factor for the quantification of after-sales services costs of a vehicle. Predetermined motion time system are frequently used to set labor rates in industry by quantifying the amount of time required to perform specific tasks. The first such system is known as Methods-time measurement (MTM). Several variants of MTM have been developed differing from each other on their level of focus. Among them MTM-UAS is suitable for processes that average around 1-3 min. However experimental tests carried out by the authors in Elasis (Research Center of FIAT Group) demonstrate that MTM-UAS is not the optimal approach to measure serviceability times. The reason is that it doesn't take into account ergonomic factors. In the present paper the authors propose to correct the MTM-UAS method including in the task analysis the study of human postures and efforts. The proposed approach allows to estimate with an "acceptable" error the time needed to perform maintenance tasks since the first phases of product design, by working on Digital Mock-up and human models in virtual environment. As a byproduct of that analysis, it is possible to obtain a list of maintenance times in order to preventively set after-sales service costs. © 2012 Springer-Verlag.
Resumo:
Knowledge on the life span of the riveting dies used in the automotive industry is sparse. It is often the case that only when faulty products are produced are workers aware that their tool needs to be changed. This is of course costly both in terms of time and money. Responding to this challenge, this paper proposes a methodology which integrates wear and stress analysis to quantify the life of a riveting die. Experiments are carried out to measure the applied load required to split a rivet. The obtained results (i.e. force curves) are used to validate the wear mechanisms of the die observed using scanning electron microscopy. Sliding, impact, and adhesive wears are observed on the riveting die after a certain number of riveting cycles. The stress distribution on the die during riveting is simulated using a finite element (FE) approach. In order to confirm the accuracy of the FE model, the experimental force results are compared with the ones produced from FE simulation. The maximum and minimum von Mises' stresses generated from the FE model are input into a Goodman diagram and an S-N curve to compute the life of the riveting die. It is found that the riveting die is predicted to run for 4 980 000 cycles before failure.
Resumo:
This investigation aims to characterise the damping properties of the nonwoven materials with potential applications in automotive and aerospace industry. Nonwovens are a popular choice for many applications due to their relatively low manufacturing cost and unique properties. It is known that nonwovens are efficient energy dispersers for certain applications such as acoustic damping and ballistic impact. It is anticipated that these energy absorption properties could eventually be used to provide damping for mechanical vibrations. However the behaviour of nonwovens under dynamic load and vibration has not been investigated before. Therefore we intend to highlight these aspects of the behaviour of the nonwovens through this research. In order to obtain an insight to the energy absorption properties of the nonwoven fabrics, a range of tests has been performed. Forced vibration of the cantilever beam is used to explore damping over a range of resonance modes and input amplitudes. The tests are conducted on aramid, glass fibre and polyester fabrics with a range of area densities and various coatings. The tests clarified the general dynamic behaviour of the fabrics tested and the possible response in more real application condition as well. The energy absorption in both thickness and plane of the fabric is tested. The effects of the area density on the results are identified. The main absorption mechanism is known to be the friction. The frictional properties are improved by using a smaller fibre denier and increasing fibre length, this is a result of increasing contact surface between fibres. It is expected the increased friction result in improving damping. The results indicate different mechanism of damping for fiber glass fabrics compared to the aramid fabrics. The frequency of maximum efficiency of damping is identified for the fabrics tested. These can be used to recommend potential applications.
Resumo:
The majority of the kinetic models employed in catalytic after-treatment of exhaust emissions use a global kinetic approach owing to the simplicity because one expression can account for all the steps in a reaction. The major drawback of this approach is the limited predictive capabilities of the models. The intrinsic kinetic approach offers much more information about the processes occurring within the catalytic converter; however, it is significantly more complex and time consuming to develop. In the present work, a methodology which allows accessing a model that combines the simplicity of the global kinetic approach and the accuracy of the intrinsic kinetic approach is reported. To assess the performance of this new approach, the oxidation of carbon monoxide in the presence of nitric oxide as well as a driving cycle was investigated. The modelling of carbon monoxide oxidation with oxygen which utilised the intrinsic kinetic approach with the global kinetic approach was used for the carbon monoxide + nitric oxide reaction (and all remaining reactions for the driving cycle). The comparison of the model results for the dual intrinsic + global kinetic approach with the experimental data obtained for both the reactor and the driving cycle indicate that the dual approach is promising with results significantly better than those obtained with only the global kinetics approach.
Resumo:
Many kinetic models have appeared in literature in past decades using two main approaches: the traditional global kinetics approach, or the more complex micro-kinetics approach. Whether global or micro-kinetics, kinetic models have been based on experimental data obtained at the end of the monolith. The experimental procedure using end pipe analysis may give an accurate overview of the reaction mechanisms that occur; however, the lack of information from within the catalyst can ultimately lead to inaccuracies in the kinetic model and parameters used.
Using SpaciMS, a spatially resolved experimental technique developed at the Queen's University Belfast, information from within the catalyst can be obtained. This minimally invasive technique provides detailed information of the gas concentration and temperature profile from inside the catalytic monolith. This paper presents a kinetic model and simulations validated against experimental data obtained from three positions inside the catalyst monolith at 2, 14, and 26 mm in, using data from the SpaciMS. Also, simulations of end pipe analysis, using a commercial reactor, for the CO oxidation are presented and analyzed. The simulations presented are for varying concentrations of both CO and O2 (0.5 % and 1 % CO, 0.5 % and 2 % O2) for both the global and micro-kinetic approach.
Resumo:
This study identifies and analyzes the effect that aging time and temperature have on the CO light-off activity of three-way catalyst samples, aged in a static air (oxidizing) atmosphere. The bench aging time (BAT) equation proposed by the Environmental Protection Agency (EPA), which describes aging as dependent upon time at temperature, was used to calculate a range of oven aging times and temperatures based on a RAT-A engine bench aging cycle.
CO light-off tests carried out on cores aged between 800 and 900 °C have shown that it is the aging temperature that has the greatest effect on catalyst deterioration for static aging testing, with aging time having little effect. These results were in contradiction to the BAT equation, an industry norm for the aging of catalysts. This demonstrates that static aging, whilst showing how temperature affects aging, gives little or no time effects. The results have shown that static aging is not representative of actual aging on a vehicle.
Progressive aging conducted at a temperature of 1000 °C was shown to cause a decrease in catalyst activity as the aging time increased. However, even in these extreme conditions, static aging gave a slower rate of aging with time when compared to engine aging as defined by the BAT equation. Overall, static aging in air has been shown to produce a greater increase in aging due to temperature than predicted by the BAT equation, but less aging due to aging time.
Resumo:
This study describes an innovative monolith structure designed for applications in automotive catalysis using an advanced manufacturing approach developed at Imperial College London. The production process combines extrusion with phase inversion of a ceramic-polymer-solvent mixture in order to design highly ordered substrate micro-structures that offer improvements in performance, including reduced PGM loading, reduced catalyst ageing and reduced backpressure.
This study compares the performance of the novel substrate for CO oxidation against commercially available 400 cpsi and 900 cpsi catalysts using gas concentrations and a flow rate equivalent to those experienced by a full catalyst brick when attached to a vehicle. Due to the novel micro-structure, no washcoat was required for the initial testing and 13 g/ft3 of Pd was deposited directly throughout the substrate structure in the absence of a washcoat.
Initial results for CO oxidation indicate that the advanced micro-structure leads to enhanced conversion efficiency. Despite an 79% reduction in metal loading and the absence of a washcoat, the novel substrate sample performs well, with a light-off temperature (LOT) only 15 °C higher than the commercial 400 cpsi sample.
To test the effects of catalyst ageing on light-off temperature, each sample was aged statically at a temperature of 1000 °C, based on the Bench Ageing Time (BAT) equation. The novel substrate performed impressively when compared to the commercial samples, with a variation in light-off temperature of only 3% after 80 equivalent hours of ageing, compared to 12% and 25% for the 400 cpsi and 900 cpsi monoliths, respectively.
Resumo:
This paper presents the rational for the selection of fluids for use in a model based study of sub and supercritical Waste Heat Recovery (WHR) Organic Rankine Cycle (ORC). The study focuses on multiple vehicle heat sources and the potential of WHR ORC’s for its conversion into useful work. The work presented on fluid selection is generally applicable to any waste heat recovery system, either stationary or mobile and, with careful consideration, is also applicable to single heat sources. The fluid selection process presented reduces the number of potential fluids from over one hundred to a group of under twenty fluids for further refinement in a model based WHR ORC performance study. The selection process uses engineering judgement, legislation and, where applicable, health and safety as fluid selection or de-selection criteria. This paper also investigates and discusses the properties of specific ORC fluids with regard to their impact on the theoretical potential for delivering efficient WHR ORC work output. The paper concludes by looking at potential temperature and pressure WHR ORC limits with regard to fluid properties thereby assisting with the generation of WHR ORC simulation boundary conditions.
Resumo:
As the concept of engine downsizing becomes ever more integrated into automotive powertrain development strategies, so too does the pressure on turbocharger manufacturers to deliver improvements in map width and a reduction in the mass flow rate at which compressor surge occurs. A consequence of this development is the increasing importance of recirculating flows, both in the impeller inlet and outlet domains, on stage performance.
The current study seeks to evaluate the impact of the inclusion of impeller inlet recirculation on a meanline centrifugal compressor design tool. Using a combination of extensive test data, single passage CFD predictions, and 1-D analysis it is demonstrated how the addition of inlet recirculation modelling impacts upon stage performance close to the surge line. It is also demonstrated that, in its current configuration, the accuracy of the 1-D model prediction diminishes significantly with increasing blade tip speed.
Having ascertained that the existing model requires further work, an evaluation of the vaneless diffuser modelling method currently employed within the existing 1-D model is undertaken. The comparison of the predicted static pressure recovery coefficient with test data demonstrated the inherent inadequacies in the resulting prediction, in terms of both magnitude and variation with flow rate. A simplified alternative method based on an equivalent friction coefficient is also presented that, with further development, could provide a significantly improved stage performance prediction.