976 resultados para ANPSP control model
Resumo:
Among the various work stress models, one of the most popular to date is the job demands-‐control (JDC) model developed by Karasek (1979), which postulates that work-‐related strain will be the highest under work conditions characterized by high demands and low autonomy. The absence of social support at work will further increase negative outcomes. However, this model does not apply equally to all individuals and to all cultures. In the following studies, we assessed work characteristics, personality traits, culture-‐driven individual attributes, and work-‐related health outcomes, through the administration of questionnaires. The samples consist of Swiss (n = 622) and South African (n = 879) service-‐oriented employees (from health, finance, education and commerce sectors) and aged from 18 to 65 years old. Results generally confirm the universal contribution of high psychological demands, low decision latitude and low supervisor support at work, as well as high neuroticism predict the worse health outcomes among employees in both countries. Furthermore, low neuroticism plays a moderating role between psychological demands and burnout, while high openness and high conscientiousness each play a moderating role between decision latitude and burnout in South Africa. Results also reveal that culture-‐driven individual attributes play a role in both countries, but in a unique manner and according to the ethnic group of belonging. Given that organizations are increasingly characterized with multicultural employees as well as increasingly adverse and complex job conditions, our results help in identifying more updated and refined dynamics that are key between the employee and the work environment in today's context. -- L'un des modèles sur le stress au travail des plus répandus est celui développé par Karasek (1979), qui postule qu'une mauvaise santé chez les employés résulte d'une combinaison de demandes psychologiques élevées, d'une latitude décisionnelle faible et de l'absence de soutien social au travail. Néanmoins, ce modèle ne s'applique pas de façon équivalente chez tous les individus et dans toutes les cultures. Dans les études présentées, nous avons mesuré les caractéristiques de travail, les traits de personnalité, les traits culturels et les effets lies à la santé à l'aide de questionnaires. L'échantillon provient de la Suisse (n = 622) et de l'Afrique du Sud (n = 879) et comprend des employés de domaines divers en lien avec le service (notamment des secteurs de la santé, finance, éducation et commerce) tous âgés entre 18 et 65 ans. Les résultats confirment l'universalité des effets directs des demandes au travail, la latitude décisionnelle faible, le soutien social faible provenant du supérieur hiérarchique, ainsi que le névrosisme élevé qui contribuent à un niveau de santé faible au travail, et ce, dans les deux pays. De plus, un niveau faible de névrosisme a un effet de modération entre les demandes au travail et l'épuisement professionnel, alors que l'ouverture élevée et le caractère consciencieux élevé modèrent la relation entre la latitude décisionnelle et l'épuisement professionnel en Afrique du Sud. Nous avons aussi trouvé que les traits culturels jouent un rôle dans les deux pays, mais de façon unique et en fonction du groupe ethnique d'appartenance. Sachant que les organisations sont de plus en plus caractérisées par des employés d'origine ethnique variées, et que les conditions de travail se complexifient, nos résultats contribuent à mieux comprendre les dynamiques entre l'employé et l'environnement de travail contemporain. personnalité, différences individuelles, comparaisons culturelles, culture, stress au travail, épuisement professionnel, santé des employés.
Resumo:
A decentralized model reference controller is designed to reduce the magnitude of the transversal vibration of a flexible cable-stayed beam structure induced by a seismic excitation. The controller design is made based on the principle of sliding mode such that a priori knowledge
Resumo:
The present study examines the Five-Factor Model (FFM) of personality and locus of control in French-speaking samples in Burkina Faso (N = 470) and Switzerland (Ns = 1,090, 361), using the Revised NEO Personality Inventory (NEO-PI-R) and Levenson's Internality, Powerful others, and Chance (IPC) scales. Alpha reliabilities were consistently lower in Burkina Faso, but the factor structure of the NEO-PI-R was replicated in both cultures. The intended three-factor structure of the IPC could not be replicated, although a two-factor solution was replicable across the two samples. Although scalar equivalence has not been demonstrated, mean level comparisons showed the hypothesized effects for most of the five factors and locus of control; Burkinabè scored higher in Neuroticism than anticipated. Findings from this African sample generally replicate earlier results from Asian and Western cultures, and are consistent with a biologically-based theory of personality.
Resumo:
Removal of introns during pre-mRNA splicing is a critical process in gene expression, and understanding its control at both single-gene and genomic levels is one of the great challenges in Biology. Splicing takes place in a dynamic, large ribonucleoprotein complex known as the spliceosome. Combining Genetics and Biochemistry, Saccharomyces cerevisiae provides insights into its mechanisms, including its regulation by RNA-protein interactions. Recent genome-wide analyses indicate that regulated splicing is broad and biologically relevant even in organisms with a relatively simple intronic structure, such as yeast. Furthermore, the possibility of coordination in splicing regulation at genomic level is becoming clear in this model organism. This should provide a valuable system to approach the complex problem of the role of regulated splicing in genomic expression.
Resumo:
Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.
Resumo:
The cytokine tumor necrosis factor-alpha (TNFalpha) induces Ca2+-dependent glutamate release from astrocytes via the downstream action of prostaglandin (PG) E2. By this process, astrocytes may participate in intercellular communication and neuromodulation. Acute inflammation in vitro, induced by adding reactive microglia to astrocyte cultures, enhances TNFalpha production and amplifies glutamate release, switching the pathway into a neurodamaging cascade (Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001) Nat. Neurosci. 4, 702-710). Because glial inflammation is a component of Alzheimer disease (AD) and TNFalpha is overexpressed in AD brains, we investigated possible alterations of the cytokine-dependent pathway in PDAPP mice, a transgenic model of AD. Glutamate release was measured in acute hippocampal and cerebellar slices from mice at early (4-month-old) and late (12-month-old) disease stages in comparison with age-matched controls. Surprisingly, TNFalpha-evoked glutamate release, normal in 4-month-old PDAPP mice, was dramatically reduced in the hippocampus of 12-month-old animals. This defect correlated with the presence of numerous beta-amyloid deposits and hypertrophic astrocytes. In contrast, release was normal in cerebellum, a region devoid of beta-amyloid deposition and astrocytosis. The Ca2+-dependent process by which TNFalpha evokes glutamate release in acute slices is distinct from synaptic release and displays properties identical to those observed in cultured astrocytes, notably PG dependence. However, prostaglandin E2 induced normal glutamate release responses in 12-month-old PDAPP mice, suggesting that the pathology-associated defect involves the TNFalpha-dependent control of secretion rather than the secretory process itself. Reduced expression of DENN/MADD, a mediator of TNFalpha-PG coupling, might account for the defect. Alteration of this neuromodulatory astrocytic pathway is described here for the first time in relation to Alzheimer disease.
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
The Chinese welding industry is growing every year due to rapid development of the Chinese economy. Increasingly, companies around the world are looking to use Chinese enterprises as their cooperation partners. However, the Chinese welding industry also has its weaknesses, such as relatively low quality and weak management. A modern, advanced welding management system appropriate for local socio-economic conditions is required to enable Chinese enterprises to enhance further their business development. The thesis researches the design and implementation of a new welding quality management system for China. This new system is called ‗welding production quality control management model in China‘ (WQMC). Constructed on the basis of analysis of a survey and in-company interviews, the welding management system comprises the following different elements and perspectives: a ‗Localized congenital existing problem resolution strategies‘ (LCEPRS) database, a ‗human factor designed training system‘ (HFDT) training strategy, the theory of modular design, ISO 3834 requirements, total welding management (TWM), and lean manufacturing (LEAN) theory. The methods used in the research are literature review, questionnaires, interviews, and the author‘s model design experiences and observations, i.e. the approach is primarily qualitative and phenomenological. The thesis describes the design and implementation of a HFDT strategy in Chinese welding companies. Such training is an effective way to increase employees‘ awareness of quality and issues associated with quality assurance. The study identified widely existing problems in the Chinese welding industry and constructed a LCEPRS database that can be used in efforts to mitigate and avoid common problems. The work uses the theory of modular design, TWM and LEAN as tools for the implementation of the WQMC system.
Resumo:
Dues à leur importance croissante dans la dégénérescence musculaire, les mitochondries sont de plus en plus étudiées en relation à diverses myopathies. Leurs mécanismes de contrôle de qualité sont reconnus pour leur rôle important dans la santé mitochondrial. Dans cette étude, nous tentons de déterminer si le déficit de mitophagie chez les souris déficiente du gène Parkin causera une exacerbation des dysfonctions mitochondriales normalement induite par la doxorubicine. Nous avons analysé l’impact de l’ablation de Parkin en réponse à un traitement à la doxorubicine au niveau du fonctionnement cardiaque, des fonctions mitochondriales et de l’enzymologie mitochondriale. Nos résultats démontrent qu’à l’état basal, l’absence de Parkin n’induit pas de pathologie cardiaque mais est associé à des dysfonctions mitochondriales multiples. La doxorubicine induit des dysfonctions respiratoires, du stress oxydant mitochondrial et une susceptibilité à l’ouverture du pore de transition de perméabilité (PTP). Finalement, contrairement à notre hypothèse, l’absence de Parkin n’accentue pas les dysfonctions mitochondriales induites par la doxorubicine et semble même exercer un effet protecteur.
Resumo:
We derive a universal model for atom pairs interacting with non-resonant light via the polarizability anisotropy, based on the long range properties of the scattering. The corresponding dynamics can be obtained using a nodal line technique to solve the asymptotic Schrödinger equation. It consists of imposing physical boundary conditions at long range and vanishing the wavefunction at a position separating the inner zone and the asymptotic region. We show that nodal lines which depend on the intensity of the non-resonant light can satisfactorily account for the effect of the polarizability at short range. The approach allows to determine the resonance structure, energy, width, channel mixing and hybridization even for narrow resonances.
Resumo:
Non-resonant light interacting with diatomics via the polarizability anisotropy couples different rotational states and may lead to strong hybridization of the motion. The modification of shape resonances and low-energy scattering states due to this interaction can be fully captured by an asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J. Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic multi-channel description are found to be approximately linear in the field intensity up to fairly large intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of such resonances by the non-resonant field. The multi-channel results furthermore indicate the dependence on field intensity to present, at least approximately, universal characteristics. Here we combine the nodal line technique to solve the asymptotic Schrödinger equation with perturbation theory. Comparing our single channel results to those obtained with the full interaction potential, we find nodal lines depending only on the field-free scattering length of the diatom to yield an approximate but universal description of the field-dressed molecule, confirming universal behavior.
Resumo:
The transformation from high level task specification to low level motion control is a fundamental issue in sensorimotor control in animals and robots. This thesis develops a control scheme called virtual model control which addresses this issue. Virtual model control is a motion control language which uses simulations of imagined mechanical components to create forces, which are applied through joint torques, thereby creating the illusion that the components are connected to the robot. Due to the intuitive nature of this technique, designing a virtual model controller requires the same skills as designing the mechanism itself. A high level control system can be cascaded with the low level virtual model controller to modulate the parameters of the virtual mechanisms. Discrete commands from the high level controller would then result in fluid motion. An extension of Gardner's Partitioned Actuator Set Control method is developed. This method allows for the specification of constraints on the generalized forces which each serial path of a parallel mechanism can apply. Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing a simple set of virtual components has successfully compelled the robot to walk eight consecutive steps.
Resumo:
Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.