967 resultados para ALDOSTERONE BLOCKADE
Resumo:
Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.
Resumo:
The acute renal tubular effects of two pharmacologically distinct angiotensin II receptor antagonists have been evaluated in normotensive volunteers on various salt diets. In the first study, the renal response to a single oral dose of losartan (100 mg) was assessed in subjects on a low (50 mmol Na/d) and on a high (200 mmol Na/d) salt intake. In a second protocol, the renal effects of 50 mg irbesartan were investigated in subjects receiving a 100 mmol Na/d diet. Both angiotensin II antagonists induced a significant increase in urinary sodium excretion. With losartan, a modest, transient increase in urinary potassium and a significant increase in uric acid excretion were found. In contrast, no change in potassium and uric acid excretions were observed with irbesartan, suggesting that the effects of losartan on potassium and uric acid are due to the intrinsic pharmacologic properties of losartan rather than to the specific blockade of renal angiotensin II receptors. Assessment of segmental sodium reabsorption using lithium as a marker of proximal tubular reabsorption demonstrated a decreased distal reabsorption of sodium with both antagonists. A direct proximal tubular natriuretic effect of the angiotensin II antagonist could be demonstrated only with irbesartan. This apparent discrepancy allowed us to reveal the importance of acute water loading as a possible confounding factor in renal studies. The results of the present analysis show that acute water loading per se may enhance renal sodium excretion and hence modify the level of activity of the renin-angiotensin system expected from a given sodium diet. Since acute water loading is a common practice in clinical renal studies, this confounding factor should be taken into account when investigating the renal effects of vasoactive systems.
Resumo:
BACKGROUND: Non-steroidal anti-inflammatory drugs are known to promote sodium retention and to blunt the blood pressure lowering effects of several classes of antihypertensive agents including beta-blockers, diuretics and angiotensin converting enzyme (ACE) inhibitors. The purpose of the present study was to investigate the acute and sustained effects of indomethacin on the renal response to the angiotensin II receptor antagonist valsartan and to the ACE inhibitor enalapril. METHODS: Twenty normotensive subjects maintained on fixed sodium intake (100 mmol sodium/day) were randomized to receive for one week: valsartan 80 mg o.d., enalapril 20 mg o.d., valsartan 80 mg o.d. + indomethacin 50 mg bid and enalapril 20 mg o.d. + indomethacin 50 mg bid. This single-blind study was designed as a parallel (valsartan vs. enalapril) and cross-over trial (valsartan or enalapril vs. valsartan + indomethacin or enalapril + indomethacin). Renal hemodynamics and urinary electrolyte excretion were measured for six hours after the first and seventh administration of each treatment regimen. RESULTS: The results show that valsartan and enalapril have comparable renal effects characterized by no change in glomerular filtration rate and significant increases in renal plasma flow and sodium excretion. The valsartan- and enalapril-induced renal vasodilation is not significantly blunted by indomethacin. However, indomethacin similarly abolishes the natriuresis induced by the angiotensin II antagonist and the ACE inhibitor. CONCLUSIONS: This observation suggests that although angiotensin receptor antagonists do not affect prostaglandin metabolism, the administration of a non-steroidal anti-inflammatory drug blunts the natriuretic response to angiotensin receptor blockade.
Resumo:
Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression. Cancer Res; 73(12); 3591-603. ©2013 AACR.
Resumo:
We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.
Resumo:
Short- and long-term effect of oxytocin on Na+ transport and Na-K-ATPase biosynthesis in the toad bladder, and the potential interaction of this hormone with aldosterone have been studied, leading to the following observations. An early Na+ transport response (oxytocin, 50 mU/ml) peaked at 10-15 min of hormone addition. At maximal stimulation a three- to fourfold increase in Na+ transport was observed, a sustained Na+ transport response (about two-fold control base line) was observed as long as the hormone was present in the medium and for up to 20 h of incubation. Pretreatment for 30 min with actinomycin D (2 micrograms/ml) did not inhibit the early response, but significantly impaired the sustained response, suggesting that de novo protein synthesis was required. The simultaneous addition of the two hormones led within 60 min to a marked potentiation of the action on Na+ transport. This synergism could be mimicked by exogenous cyclic adenosine monophosphate (cAMP). Oxytocin alone (18 h exposure, 50 mU/ml) increased the relative rate of synthesis of both alpha and beta subunits of Na-K-ATPase (1.9- and 1.6-fold, respectively; P less than 0.05), whereas aldosterone (80 nM) increased the relative rate of synthesis of the same subunits (2.6- and 2.2-fold, respectively; P less than 0.02). Finally, in contrast to what was observed at the physiological level, the interaction of oxytocin and aldosterone did not lead to a similar potentiation at the biochemical level, i.e., induction of Na-K-ATPase biosynthesis (2.7- and 2.9-fold, for alpha and beta subunits, respectively; P less than 0.025).
Resumo:
The renin-angiotensin aldosterone system (RAAS) is central to the pathogenesis of cardiovascular disease. RAAS inhibition can reduce blood pressure, prevent target organ damage in hypertension and diabetes, and improve outcomes in patients with heart failure and/or myocardial infarction. This review presents the history of RAAS inhibition including a summary of key heart failure, myocardial infarction, hypertension and atrial fibrillation trials. Recent developments in RAAS inhibition are discussed including implementation and optimization of current drug therapies. Finally, ongoing clinical trials, opportunities for future trials and issues related to the barriers and approvability of novel RAAS inhibitors are highlighted.
Resumo:
RÉSUMÉ Introduction L'effet des agents myorelaxants ainsi que des anticholinestérases sur la profondeur d'anesthésie a été étudié avec des résultats contradictoires. C'est pourquoi nous avons évalué l'effet de l'atracurium et de la néostigmine sur le BIS (bispectral index) ainsi que sur les potentiels auditives évoqués (middle-latency auditory evoked potentials, A-Line® autoregressive index [AAI]). Méthodes Après avoir obtenu l'accord du comité d'éthique local, nous avons étudié 40 patients ayant donné leur consentement écrit, ASA I-II, âgé de 18-69 ans. L'anesthésie générale a consisté en anesthésie intra-veineuse à objectif de concentration avec du propofol et du remifentanil. La fonction de la jonction neuromusculaire était monitorée en continu au moyen d'un électromyographe. Le BIS et l'AAI ont été enregistrés en continu. Après avoir atteint des valeurs stables au niveau du BIS, les patients ont été attribués à deux groupes par randomisation. Les patients du groupe 1 ont reçu 0.4 mg kg-1 d'atracurium et 5 minutes plus tard le même volume de NaCI 0.9%, dans le groupe 2 la séquence d'injection était inversée, le NaCI 0.9% en premier et l'atracurium en deuxième. Au moment où le premier « twitch » d'un train de quatre atteignait 10% de l'intensité avant la relaxation, les patients ont été randomisés une deuxième fois. Les patients du groupe N ont reçu 0.04 mg kg-1 de néostigmine et 0.01 rn9 kg-1 de glycopyrrolate alors que le groupe contrôle (G) ne recevait que 0.01 mg kg-] de glycopyrrolate. Résultats : L 'injection d'atracurium ou de NaCI 0.9% n'a pas eu d'effet sur le BIS ou l'AAI. Après l'injection de néostigmine avec glycopyrrolate, le BIS et I `AAI a augmenté de manière significative (changement maximal moyen du BIS 7.1 ± 7.5, P< 0.001, de l'AAI 9.7 ± 10.5, P< 0.001). Suite à l'injection de glycopyrrolate seule, le BIS et l'AAI a augmenté également (changement maximal moyen du BIS 2.2 ± 3.4, P< 0.008, de l'AAI 3.5 ± 5.7, P< 0.012), mais cette augmentation était significativement moins importante que dans le groupe N (P< 0.012 pour le BIS, P< 0.027 pour l'AAI). Conclusion Ces résultats laissent supposer que la néostigmine peut altérer la profondeur de l'anesthésie. La diminution de la profondeur d'anesthésie enregistrée par le BIS et l'AAI correspond probablement à une réapparition brusque d'une stimulation centrale liée à la proprioception. Au contraire, lors de la curarisation, le tonus musculaire diminue de manière beaucoup plus progressive, pouvant ainsi expliquer l'absence d'effet sur la profondeur d'anesthésie. ABSTRACT Background. Conflicting effects of neuromuscular blocking drugs and anticholinesterases on depth of anaesthesia have been reported. Therefore we evaluated the effect of atracurium and neostigmine on bispectral index (BIS) and middle-latency auditory evoked potentials (AAI). Methods. We studied 40 patients (ASA I-II) aged 18-69 yr. General anaesthesia consisted of propofol and remifentanil by target-controlled infusion and neuromuscular function was monitored by electromyography. When BIS reached stable values, patients were randomly assigned to one of two groups. Group I received atracurium 0.4 mg kg-1 and, 5 min later, the same volume of NaCl 0.9%; group 2 received saline first and then atracurium. When the first twitch of a train of four reached 10% of control intensity, patients were again randomized: one group (N) received neostigmine 0.04 mg kg-1 and glycopyrrolate 0.01 mg kg-1, and the control group (G) received only glycopyrrolate. Results. Injection of atracurium or NaCl 0.9% had no effect on BIS or AAI. After neostigmine¬glycopyrrolate, BIS and AAI increased significantly (mean maximal change of BIS 7.1 [SD 7.5], P<0.001; mean maximal change of AAI 9.7 [10.5], P<0.001). When glycopyrrolate was injected alone BIS and AAI also increased (mean maximal change of BIS 2.2 [3.4], P=0.008; mean maximal change of AAI 3.5 [5.7], P=0.012), but this increase was significantly less than in group N (P=0.012 for BIS; P=0.027 for AAI). Conclusion. These data suggest that neostigmine alters the state of propofol-remifentanil anaesthesia and may enhance recovery.
Resumo:
Transepithelial Na+ reabsorption across tight epithelia is regulated by aldosterone. Mineralocorticoids modulate the expression of a number of proteins. Na+,K+-ATPase has been identified as an aldosterone-induced protein (Geering, K., M. Girardet, C. Bron, J. P. Kraehenbuhl, and B. C. Rossier, 1982, J. Biol. Chem., 257:10338-10343). Using A6 cells (kidney of Xenopus laevis) grown on filters we demonstrated by Northern blot analysis that the induction of Na+,K+-ATPase was mainly mediated by a two- to fourfold accumulation of both alpha- and beta-subunit mRNAs. The specific competitor spironolactone decreased basal Na+ transport, Na+,K+-ATPase mRNA, and the relative rate of protein biosynthesis, and it blocked the response to aldosterone. Cycloheximide inhibited the aldosterone-dependent sodium transport but did not significantly affect the cytoplasmic accumulation of Na+,K+-ATPase mRNA induced by aldosterone.
Resumo:
The purpose of this study was to assess whether the administration of a calcium entry blocker can prevent the acute blood pressure rise induced by cigarette smoking. Seven male habitual smokers were included. After 45 min of equilibration, they took in randomized single-blind fashion at a 1 week interval either a placebo or nifedipine, 10 mg p.o. Thirty minutes thereafter, the subjects smoked within 10 min two cigarettes containing 1.4 mg of nicotine each. In addition to heart rate and skin blood flow (laser Doppler method), blood pressure of the median left finger was monitored continuously for 100 min using a noninvasive device (Finapres). Nifedipine induced an increase in skin blood flow that was not influenced by smoking. This skin blood flow response was observed although nifedipine had by itself no effect on systemic blood pressure. The calcium antagonist markedly attenuated the blood pressure rise induced by cigarette smoking. However, it tended to accentuate the heart rate acceleration resulting from inhalation of nicotine-containing smoke.
Resumo:
Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.
Resumo:
INTRODUCTION: The evaluation of a new drug in normotensive volunteers provides important pharmacodynamic and pharmacokinetic information as long as the compound has a specific mechanism of action which can be evaluated in healthy subjects as well as in patients. The purpose of the present paper is to discuss the results that have been obtained in normal volunteers with the specific angiotensin II receptor antagonist, losartan potassium. DOSE-FINDING: Over the last few years, studies in normotensive subjects have demonstrated that the minimal dose of losartan that produces maximal efficacy is 40-80 mg. Losartan has a long duration of action and its ability to produce a sustained blockade of the renin-angiotensin system is due almost exclusively to the active metabolite E3174. HORMONAL EFFECTS: Angiotensin II receptor blockade with losartan induces an expected increase in plasma renin activity and plasma angiotensin II levels. A decrease in plasma aldosterone levels has been found only with a high dose of losartan (120 mg). RENAL AND BLOOD PRESSURE EFFECTS: In normotensive subjects, losartan has little or no effect on blood pressure unless the subjects are markedly salt-depleted. Losartan causes no change in the glomerular filtration rate and either no modification or only a slight increase in renal blood flow. Losartan significantly increases urinary sodium excretion, however, and surprisingly produces a transient rise in urinary potassium excretion. Finally, losartan increases uric acid excretion and lowers plasma uric acid levels. CONCLUSIONS: These results suggest that losartan is an effective angiotensin II receptor antagonist in normal subjects. Its safety and clinical efficacy in hypertensive patients will be addressed in large clinical trials.
Resumo:
The purpose of this study was to compare the effects of propranolol administered either by i.v. infusion or by prolonged oral administration (4 days) during the first 3 weeks following burns. The resting metabolic rate (RMR) of 10 non-infected fasting burned patients (TBSA: 28 per cent, range 18-37 per cent) was determined four times consecutively by indirect calorimetry (open circuit hood system) following: (1) i.v. physiological saline; (2) i.v. propranolol infusion (2 micrograms/kg/min following a bolus of 80 micrograms/kg); (3) oral propranolol (40 mg q.i.d. during 4 +/- 1 days); and (4) in control patients. All patients showed large increases in both RMR (144 +/- 2 per cent of reference values) and in urinary catecholamine excretion (three to four times as compared to control values). The infusion of propranolol induced a significant decrease in RMR to 135 +/- 2 per cent and oral propranolol to 129 +/- 3 per cent of reference values. A decrease in lipid oxidation but no change in carbohydrate and protein oxidation were observed during propranolol administration. It is concluded that the decrease in RMR induced by propranolol was not influenced by the route of administration. The magnitude of the decrease in energy expenditure suggests that beta-adrenergic hyperactivity represents only one of the mediators of the hypermetabolic response to burn injury.
Resumo:
Acute ethanol administration stimulates sympathetic nervous system activity. The present study was designed to determine whether this sympathetic activation affects glycogenolysis and total hepatic glucose production (HGP) during ethanol-induced inhibition of gluconeogenesis. Nineteen volunteers participated in four protocols. Two protocols aimed to study--using combined infusion of [6,6-2H2]glucose and [U-13C]glucose, VCO2 and 13CO2 measurements--the effects of ethanol infusion alone (n = 10) or with propranolol (n = 6) or phentolamine infusion (n = 4) on HGP, glucose disposal (Rd), glucose oxidation [13C]Glcox and non-oxidative glucose disposal (NOGD = Rd - [13C]Glcox). The fourth protocol assessed the effects of saline infusion alone on HGP. Using ethanol, HGP decreased by 23%, Rd by 20% and glycaemia by 9% (all P < 0.001); heart rate increased by 10%, whereas blood pressure remained unchanged. The effects were not observed with saline, except a slight (10%) decrease in HGP (P < 0.01 vs. ethanol). Ethanol did not affect [13C]Glcox but decreased NOGD by 73% (P < 0.001). Propranolol or phentolamine did not alter any of the effects of ethanol on glucose metabolism, but decreased mean arterial pressure. Propranolol prevented the ethanol-induced increase in heart rate. In conclusion, ethanol decreased blood glucose by decreasing HGP, presumably by inhibiting gluconeogenesis. Sympathetic activation prevented the decrease in blood pressure produced by ethanol but did not stimulate glycogenolysis.
Resumo:
Résumé en français Jusqu'alors, il n'avait jamais été formellement démontré qu'une forte dose d'un antagoniste de l'angiotensine II à longue durée d'action pouvait être aussi efficace sur le blocage du système rénine-angiotensine que l'association d'un inhibiteur de l'enzyme de conversion avec le même antagoniste de l'angiotensine II à des doses plus faibles. Dans cette étude randomisée en double aveugle, nous avons étudié le blocage du système rénine-angiotensine obtenu avec trois doses d'olmesartan medoxomil (20, 40 et 80 mg) chez 30 volontaires sains que nous avons comparé au blocage obtenu par du lisinopril (20 mg), seul ou associé à de l'olmesartan medoxomil (20 et 40 mg). L'étude s'est déroulée en deux phases selon un design par crossover. A deux reprises, chaque volontaire à reçu durant une semaine l'un des six traitements possibles. Un intervalle d'une semaine a été respecté entre les deux phases (période de washout). L'objectif principal était d'étudier, 24 heures après la dernière dose, le blocage de l'élévation de la pression systolique en réponse à l'administration d'angiotensine I. Ce blocage était de 58% ± 19% (moyenne ± déviation standard) avec 20 mg de lisinopril, de 58% ± 11% avec 20 mg d'olmesartan medoxomil, de 62% ± 16% avec 40 mg d'olmesartan medoxomil, et de 76% ± 12% avec la plus forte dose d'olmesartan medoxomil (80 mg) (P=.016 versus 20 mg de lisinopril et P=.0015 versus 20 mg d'olmesartan medoxomil). Le blocage était de 80% ± 22% avec 20 mg de lisinopril associé à 20 mg d'olmesartan medoxomil et de 83% ± 9% avec 20 mg de lisinopril associé à 40 mg d'olmesartan medoxomil (P= .3 versus 80 mg d'olmesartan medoxomil). Ces résultats montrent, que chez les volontaires sains, une dose suffisamment élevée d'olmesartan medoxomil peut induire un blocage à 24 heures quasi complet de l'élévation de la pression artérielle en réponse à l'administration d'angiotensine I. De même, en terme de blocage de l'effet vasculaire de l'angiotensine I, une dose suffisamment élevée d'un antagoniste de l'angiotensine II de longue durée d'action est tout aussi efficace que ce même antagoniste à des doses plus faibles associé avec à un inhibiteur de l'enzyme de conversion.