982 resultados para AG NANOCLUSTERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present work provides an electrodeposition based methodology for synthesizing Ag-Ni-Fe nanowires. Nanowire morphology was achieved by using an anodic alumina membrane having cylindrical pores of similar to 200 nm diameter. Compositional analysis at a single nanowire level revealed a fairly uniform distribution of component elements in the nanowire volume. Structural characterization strongly indicated toward a presence of randomly oriented, non-equilibrium, nano-crystalline phase volume inside the nanowires. Magnetic characterization revealed a soft magnetic character for the as-synthesized Ag-Ni-Fe nanowires. (C) 2014 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work provides an electrodeposition-based methodology for synthesizing multicomponent nanowires containing Ag, Co and Ni atoms. Nanowire morphology was obtained by using an anodic alumina membrane with cylindrical pores of similar to 200-nm diameter. Structural, compositional and magnetic characterization revealed that the as-synthesized nanowires adopted a core-shell microstructure. The core (axial region) contained pure Ag phase volumes with a plate-like morphology oriented perpendicular to the nanowire axis. The shell (peripheral region) contained pure Ag nanoparticles along with superparamagnetic Co and Ni rich clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report provides information about an electrodeposition based two-step synthesis methodology for producing core-shell Ag-(Ni-O) nanowires and their detailed structural and compositional characterization using electron microscopy technique. Nanowires were produced by employing anodic alumina templates with a pore diameter of 200 nm. In the first step of the synthesis process, nanocrystalline Ni-O was electrodeposited in a controlled manner such that it heterogeneously nucleated and grew only on the template pore walls without filling the pores from bottom upwards. This alumina template with pore walls coated with Ni-O was then utilized as a template during the electrodeposition of Ag in the second step. Electrodeposited Ag filled the template pores to finally produce Ag-(Ni-O) core-shell nanowires with an overall diameter of 200 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new inorganic coordination polymers, {Mn(H2O)(6)]-Mn-2(H2O)(6)](Cu-6(mna)(6)]center dot 6H(2)O}, 1, {Mn-4(OH)(2)(H2O)(10)] (Cu-6(mna)6]center dot 8H(2)O}, 2, and {Mn-2(H2O)(5)]Ag-6(Hmna)(2)(mna)(4)]center dot 20H(2)O}, 3, have been synthesized at room temperature through a sequential crystallization route. In addition, we have also prepared and characterized the molecular precursor Cu-6(Hmna)(6)]. Compounds 1 and 3 have a two-dimensional structure, whereas 2 has a three-dimensional structure. The formation of 2 has been achieved by minor modification in the synthetic composition, suggesting the subtle relationship between the reactant composition and the structure. The hexanudear copper and silver duster cores have Cu center dot center dot center dot Cu and Ag center dot center dot center dot Ag distances close to the sum of the van der Waals radii of Cu1+ and Ag1+, respectively. The connectivity between Cu-6(mna)(6)](6-) cluster units and Mn2+ ions gives rise to a brucite related layer in 1 and a pcu-net in 2. The Ag-6(Hmna)(2)(mna)(4)](4-) cluster in 3, on the other hand, forms a sql-net with Mn2+. Compound 1 exhibits an interesting and reversible hydrochromic behavior, changing from pale yellow to red, on heating at 70 degrees C or treatment under a vacuum. Electron paramagnetic resonance studies indicate no change in the valence states, suggesting the color change could be due to changes in the coordination environment only. The magnetic studies indicate weak antiferromagnetic behavior. Proton conductivity studies indicate moderate proton migrations in 1 and 3. The present study dearly establishes sequential crystallization as an important pathway for the synthesis of heterometallic coordination polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag doped BaTiO3-CuO mixed oxide thin films are evaluated for their carbon-dioxide sensing characteristics. The metal oxide films of different thicknesses are deposited on oxidized p type Si < 100 > substrate by RF Sputtering. Sensing characteristics for different CO2 concentration, (300 ppm - 1000 ppm) are obtained for different operating temperatures, (100 degrees C - 400 degrees C). Optimum temperature for maximum sensitivity is found to be 250 degrees C. The effect of annealing on sensing properties is also evaluated. The unannealed films give better sensitivity than that of annealed films. Response time and recovery time are also calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure ZnO and co-doped (Mn, Ag) ZnO nanoparticles have been successfully prepared by chemical co-precipitation method without using a capping agent. X-ray diffraction (XRD) studies confirms the presence of wurtzite (hexagonal) crystal structure similar to undoped ZnO, suggesting that doped Mn, Ag ions are substituted to the regular Zn sites. The morphology of the samples were studied by scanning electron microscopy (SEM). The chemical composition of pure and co-doped ZnO nanoparticles were characterized by energy dispersive X-ray analysis spectroscopy (EDAX). Optical absorption properties were determined by UV-vis Diffuse Reflectance Spectrophotometer. The incorporation of Ag+, Mn2+ in the place of Zn2+ provoked to decrease the size of nanocrystals as compared to pure ZnO. Optical absorption measurements indicates blue shift in the absorption band edge upon Ag, Mn ions doped ZnO nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposition was used for synthesizing 200 nm diameter Fe3O4-Ag nanotubes. Compositional analysis at the single nanotube level revealed a fairly uniform distribution of component elements in the nanotube microstructure. As-synthesized Fe3O4-Ag nanotubes were superparamagnetic in nature. Electron diffraction revealed the ultrafine nanocrystalline microstructure of the nanotubes. The effect of Ag on the anti-microbial response of the nanotubes was investigated by comparing the effect of sulphate reducing bacteria (SRB) on Fe3O4-Ag and Fe3O4 nanotubes. Fe3O4 nanotubes were also electro-deposited in the present study. It was observed that the Fe3O4-Ag nanotubes exhibited good resistance to sulphate reducing bacteria which revealed the anti-microbial nature of the Fe3O4-Ag nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous and fluffy ZnO photocatalysts were successfully prepared via simple solution based combustion synthesis method. The photocatalytic inactivation of Escherichia coli bacteria was studied separately for both Ag substituted and impregnated ZnO under irradiation of natural solar light. A better understanding of substitution and impregnation of Ag was obtained by Raman spectrum and X-ray photoelectron analysis. The reaction parameters such as catalyst dose, initial bacterial concentration and effect of hydroxyl radicals via H2O2 addition were also studied for ZnO catalyst. Effective inactivation was observed with 0.25 g L-1 catalyst loading having 10(9) CFU mL(-1) bacterial concentration. With an increase in molarity of H2O2, photocatalytic inactivation was enhanced. The effects of different catalysts were studied, and highest bacterial killing was observed by Ag impregnated ZnO with 1 atom% Ag compared to Ag substituted ZnO. This enhanced activity can be attributed to effective charge separation that is supported by photoluminescence studies. The kinetics of reaction in the presence of different scavengers showed that reaction is significantly influenced by the presence of hole and hydroxyl radical scavenger with high efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new chiral amphiphilic salicylideneaniline bearing a terminal pyridine was synthesized. It formed reverse vesicles in toluene. The addition of Ag+, however, reversibly transforms these reverse vesicles into left-handed nanohelices accompanied by spontaneous gel formation at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new Cu(I) compounds, namely Cu-2(bds)(bpy)(2)]center dot 2H(2)O (1) and Cu-4(bds)(2)(azpy)(4)]center dot 6H(2)O (3) (where bds = benzene-1,3-disulfonate, bpy = 4,4'-bipyridine and azpy = 4,4'-azopyridine), and four Ag(I) compounds, namely Ag-2(bds)(bpy)(2)]center dot 2H(2)O (2), Ag-2(bds)(azpy)(2)]center dot 4H(2)O (4), Ag(bds)(1/2)(bpe)]center dot 3H(2)O (5), and Ag-4(bds)(2)(tmdp)(4)]center dot 9H(2)O (6) (where bpe = 1,2-di(4-pyridyl) ethylene and tmdp = 4,4'trimethylenedipyridine), have been synthesized, and their structures were determined and characterized by elemental analysis, IR, UV-vis and thermal studies. The structure of the compounds changed from 1D (1 and 2) to 2D (3-5) and interpenetrated 3D (6). In the case of 5, a solid-state 2 + 2] photochemical cycloaddition reaction has been performed. Compound 2 exhibits a reversible anion exchange for perchlorate and permanganate, whereas the other compounds (1, 3-6) exhibit an irreversible anion exchange behaviour for perchlorate. Catalytic studies on 2 indicate Lewis acidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver indium sulfide (AgInS2) thin films are deposited by sequential sputtering of metallic precursor Ag/In] followed by sulfurization. Effect of substrate temperature (Tsub) during sulfurization process on the film growth is studied by varying the substrate temperature from 350 to 500 degrees C. Films prepared above 350 degrees C showed a mixture of orthorhombic and tetragonal phases of AgInS2 with tetragonal phase being dominant. Better crystalline, nearly stoichiometric and p-type films are obtained at a substrate temperature of 500 degrees C. The characteristic A(1) mode of AgInS2 chalcopyrite structure is observed in the Raman spectra at 274 cm(-1) for the films prepared above 350 degrees C. The grain size of the film increases from 489 to 895 nm with the increase in substrate temperature. The binding energies of the constituent elements are determined using XPS. The band gap of AgInS2 films is in the range of 1.64-1.92 eV and the absorption coefficient is found to be >10(4) cm(-1). Preliminary studies on the AgInS2/ZnS solar cell showed an efficiency of 0.3%. (C) 2015 Elsevier B.V. All rights reserved.