940 resultados para ADENOSINE-A1-RECEPTORS
Resumo:
Despite a rapidly increasing acceptance for a role of ATP as an extracellular mediator in several biological systems, the present report shows that ATP may mediate physiological responses in pituitary cells. We have now been able to demonstrate a specific action of ATP receptors to mediate the release of luteinizing hormone from gonadotropes and have coupled them with further studies that clearly show that ATP can be exocytotically released from cultured rat pituitary cells. Both ATP and UTP (100 microM) caused a > 14-fold increase in the rate of luteinizing hormone release from superfused cells. Adenosine 5'-[alpha, beta-methylene]triphosphate and 5'-[beta,gamma-methylene triphosphate were ineffective, and 2-methylthio-ATP had only a modest stimulatory effect. Homologous and heterologous desensitization occurred with UTP and ATP, and these did not have additive effects. Thus, nucleotides can be effective stimulators of luteinizing hormone release through a single class of ATP receptor (P2U subtype). The calcium ionophore A23187 provoked release of a substantial amount of ATP from pituitary cells in a concentration- and Ca(2+)-dependent manner, which was desensitized by pretreatment with A23187. This implies a possible paracrine and/or autocrine mechanism by which nucleotides may exert their effects on pituitary cells. In conclusion, we have provided strong evidence for a novel role of extracellular nucleotides as mediators in pituitary--in particular, in gonadotrope--function.
Resumo:
The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe ?-aminobutyric acid (GABA)(A) receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca(2+) or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at d-subunit-containing GABA(A) receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist ß-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the d-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by d-subunit-containing GABA(A) receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte-neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology.
Resumo:
Over 50% of clinically-marketed drugs target membrane proteins; in particular G protein-coupled receptors (GPCRs). GPCRs are vital to living cells, performing an active role in many processes, making them integral to drug development. In nature, GPCRs are not sufficiently abundant for research and their structural integrity is often lost during extraction from cell membranes. The objectives of this thesis were to increase recombinant yield of the GPCR, human adenosine A2A receptor (hA2AR) by investigating bioprocess conditions in large-scale Pichia pastoris and small-scale Saccharomyces cerevisiae cultivations. Extraction of hA2AR from membranes using novel polymers was also investigated. An increased yield of hA2AR from P. pastoris was achieved by investigating the methanol feeding regime. Slow, exponential feed during induction (μlow) was compared to a faster, exponential feed (μhigh) in 35 L pilot-scale bioreactors. Overall hA2AR yields were increased for the μlow cultivation (536.4pmol g-1) compared to the μhigh148.1 pmol g-1. hA2AR levels were maintained in cytotoxic methanol conditions and unexpectedly, pre-induction levels of hA2AR were detected. Small-scale bioreactor work showed that Design of Experiments (DoE) could be applied to screen for bioprocess conditions to give optimal hA2AR yields. Optimal conditions were retrieved for S. cerevisiae using a d-optimal screen and response surface methodology. The conditions were 22°C, pH 6.0, 30% DO without dimethyl sulphoxide. A polynomial equation was generated to predict hA2AR yields if conditions varied. Regarding the extraction, poly (maleic anhydride-styrene) or PMAS was successful in solubilising hA2AR from P. pastoris membranes compared with dodcecyl-β-D-maltoside (DDM) detergent. Variants of PMAS worked well as solubilising agents with either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or cholesteryl hemisuccinate (CHS). Moreover, esterification of PMAS improved solubilisation, suggesting that increased hydrophobicity stabilises hA2AR during extraction. Overall, hA2AR yields were improved in both, P. pastoris and S. cerevisiae and the use of novel polymers for efficient extraction was achieved.
Resumo:
BACKGROUND: Early-life reduction in nephron number (uninephrectomy [UNX]) and chronic high salt (HS) intake increase the risk of hypertension and chronic kidney disease. Adenosine signaling via its different receptors has been implicated in modulating renal, cardiovascular, and metabolic functions as well as inflammatory processes; however, the specific role of the A3 receptor in cardiovascular diseases is not clear. In this study, gene-modified mice were used to investigate the hypothesis that lack of A3 signaling prevents the development of hypertension and attenuates renal and cardiovascular injuries following UNX in combination with HS (UNX-HS) in mice. METHODS AND RESULTS: Wild-type (A3 (+/+)) mice subjected to UNX-HS developed hypertension compared with controls (mean arterial pressure 106±3 versus 82±3 mm Hg; P<0.05) and displayed an impaired metabolic phenotype (eg, increased adiposity, reduced glucose tolerance, hyperinsulinemia). These changes were associated with both cardiac hypertrophy and fibrosis together with renal injuries and proteinuria. All of these pathological hallmarks were significantly attenuated in the A3 (-/-) mice. Mechanistically, absence of A3 receptors protected from UNX-HS-associated increase in renal NADPH oxidase activity and Nox2 expression. In addition, circulating cytokines including interleukins 1β, 6, 12, and 10 were increased in A3 (+/+) following UNX-HS, but these cytokines were already elevated in naïve A3 (-/-) mice and did not change following UNX-HS. CONCLUSIONS: Reduction in nephron number combined with chronic HS intake is associated with oxidative stress, chronic inflammation, and development of hypertension in mice. Absence of adenosine A3 receptor signaling was strongly protective in this novel mouse model of renal and cardiovascular disease.
Resumo:
Trabalho Complementar apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de licenciada em Ciências da Nutrição
Resumo:
P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.
Resumo:
We assessed associations between steroid receptors including: estrogen-alpha, estrogen-beta, androgen receptor, progesterone receptor, the HER2 status and triple-negative epithelial ovarian cancer (ERα-/PR-/HER2-; TNEOC) status and survival in women with epithelial ovarian cancer. The study included 152 women with primary epithelial ovarian cancer. The status of steroid receptor and HER2 was determined by immunohistochemistry. Disease-free and overall survival were calculated and compared with steroid receptor and HER2 status as well as clinicopathological features using the Cox Proportional Hazards model. A mean follow-up period of 43.6 months (interquartile range=41.4 months) was achieved where 44% of patients had serous tumor, followed by mucinous (23%), endometrioid (9%), mixed (9%), undifferentiated (8.5%) and clear cell tumors (5.3%). ER-alpha staining was associated with grade II-III tumors. Progesterone receptor staining was positively associated with a Body Mass Index≥25. Androgen receptor positivity was higher in serous tumors. In stand-alone analysis of receptor contribution to survival, estrogen-alpha positivity was associated with greater disease-free survival. However, there was no significant association between steroid receptor expression, HER2 status, or TNEOC status, and overall survival. Although estrogen-alpha, androgen receptor, progesterone receptor and the HER2 status were associated with key clinical features of the women and pathological characteristics of the tumors, these associations were not implicated in survival. Interestingly, women with TNEOC seem to fare the same way as their counterparts with non-TNEOC.
Resumo:
The present study evaluated the role of N-methyl-D-aspartate receptors (NMDARs) expressed in the dorsal root ganglia (DRG) in the inflammatory sensitization of peripheral nociceptor terminals to mechanical stimulation. Injection of NMDA into the fifth lumbar (L5)-DRG induced hyperalgesia in the rat hind paw with a profile similar to that of intraplantar injection of prostaglandin E2 (PGE2), which was significantly attenuated by injection of the NMDAR antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP-5) in the L5-DRG. Moreover, blockade of DRG AMPA receptors by the antagonist 6,7-dinitroquinoxaline-2,3-dione had no effect in the PGE2-induced hyperalgesia in the paw, showing specific involvement of NMDARs in this modulatory effect and suggesting that activation of NMDAR in the DRG plays an important role in the peripheral inflammatory hyperalgesia. In following experiments we observed attenuation of PGE2-induced hyperalgesia in the paw by the knockdown of NMDAR subunits NR1, NR2B, NR2D, and NR3A with antisense-oligodeoxynucleotide treatment in the DRG. Also, in vitro experiments showed that the NMDA-induced sensitization of cultured DRG neurons depends on satellite cell activation and on those same NMDAR subunits, suggesting their importance for the PGE2-induced hyperalgesia. In addition, fluorescent calcium imaging experiments in cultures of DRG cells showed induction of calcium transients by glutamate or NMDA only in satellite cells, but not in neurons. Together, the present results suggest that the mechanical inflammatory nociceptor sensitization is dependent on glutamate release at the DRG and subsequent NMDAR activation in satellite glial cells, supporting the idea that the peripheral hyperalgesia is an event modulated by a glutamatergic system in the DRG.
Resumo:
The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.
Resumo:
ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist α,β-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the β1- or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. Also, the nonspecific selectin inhibitor fucoidan. α,β-meATP induced increases in the local concentration of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β), which were reduced by bradykinin antagonist. Finally, α,β-meATP also induced neutrophil migration. Together, these findings suggest that α,β-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain.
Resumo:
Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.
Resumo:
Background: The Brazilian population is mainly descendant from European colonizers, Africans and Native Americans. Some Afro-descendants lived in small isolated communities since the slavery period. The epidemiological status of HBV infection in Quilombos communities from northeast of Brazil remains unknown. The aim of this study was to characterize the HBV genotypes circulating inside a Quilombo isolated community from Maranhao State, Brazil. Methods: Seventy-two samples from Frechal Quilombo community at Maranhao were collected. All serum samples were screened by enzyme-linked immunosorbent assays for the presence of hepatitis B surface antigen ( HBsAg). HBsAg positive samples were submitted to DNA extraction and a fragment of 1306 bp partially comprising HBsAg and polymerase coding regions (S/POL) was amplified by nested PCR and its nucleotide sequence was determined. Viral isolates were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 320). Sequences were aligned using Muscle software and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted using Markov Chain Monte Carlo (MCMC) method to obtain the MCC tree using BEAST v.1.5.3. Results: Of the 72 individuals, 9 (12.5%) were HBsAg-positive and 4 of them were successfully sequenced for the 1306 bp fragment. All these samples were genotype A1 and grouped together with other sequences reported from Brazil. Conclusions: The present study represents the first report on the HBV genotypes characterization of this community in the Maranhao state in Brazil where a high HBsAg frequency was found. In this study, we reported a high frequency of HBV infection and the exclusive presence of subgenotype A1 in an Afro-descendent community in the Maranhao State, Brazil.
Resumo:
Background: Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin. Methodology/Principal Findings: We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin. Conclusions/Significance: PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.
Resumo:
Background: Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods: Twenty-four adult Wistar rats, 60 days old (+/-250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle + melatonin [ 100 mu g/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a. m. Results: Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions: We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.
Resumo:
Background: Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results: The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT(1/2B/2C) (methysergide), 5-HT(2A) (ketanserin) or 5-HT(1/2A/2C/5/6/7) (methiothepin) receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions: We conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2) 5-HT(1/2A/2C/3) receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-HT(1/2A/2C) and 5-HT(1/2C) receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4) 5-HT(2A/3) receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5) alpha-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.