974 resultados para ACID-RAIN STRESS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to verify that chicks from eggs injected with ascorbic acid and subjected to heat stress would have changes in acid-base balance, compared to chicks incubated at thermoneutral without injection of ascorbic acid. The parameters evaluated were blood pressure of carbon dioxide and oxygen, base excess, total carbon dioxide, concentration of sodium, potassium, ionized calcium, bicarbonate and pH of newly hatched male chicks, hatched from eggs injected with acid ascorbic acid (AA) and subjected to heat stress during incubation. The experimental design was completely randomized in factorial scheme 5 (application levels of ascorbic acid) x 2 (incubation temperatures). The data were subjected to analysis of variance using the General Linear Model procedure (GLM) of SAS ®. For the blood pH was observed significant interaction (p <0.05) between treatments with application in eggs and incubation temperatures. For the other parameters were not significant effects (p< 0.05) of AA level and neither temperature of incubation. Analyzing the unfolding of the interaction to pH was observed that chicks from eggs injected with 6% ascorbic acid and subjected to heat stress during incubation had a higher pH value compared with the thermoneutral temperature incubated (p <0.05). Therefore, it is suggested that the incubation of eggs in high temperature (39°C) can alter the metabolic rate of these embryos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The γ-aminobutyric acid benzodiazepine (GABAA /BZDR) ionophore complex has been widely studied in the central nervous system (CNS) and it regulates Cl− ion movement across the plasma membrane. The complex has been found in the distal tubule and the thick ascending limb of the kidney. The goal of this study was to see if modulation of this complex by agonists or antagonists could affect the way Madin-Darby Canine Kidney (MDCK) cells responded to an oxidant stress induced by menadione. When compared to cells incubated with menadione alone, preincubation with lindane, a nonspecific GABAA antagonist, coincubation with bicuculline, a specific GABAA antagonist, and coincubation with FG7142, an inverse agonist for the BZDR, protected cells from menadione cytotoxicity. Preincubation of cells in media containing PK11195 had no effect on menadione cytotoxicity. Coincubation with flurazepam, a BZDR agonist, exacerbated menadione cytotoxicity. This suggests that modulation of the GABAA/BZDR ionophore complex within MDCK cells with agonists and antagonists can alter the cellular responsiveness to an oxidant-induced injury. These responses via agonists and antagonists may be due to alterations of Cl− ion influx during late stage necrotic cell death. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the main problems of watermelon crops in Sou theast Spain is the thermal difference because of c limatic conditions that appear during the first stages of the crop. The objective of this work was to evaluate the effect of inducing the systemic acq uired resistance (SAR) and the induced systemic resistance (ISR) through the application of jasmonic ac id (JA) and benzoic acid (BA), respectively, to counter the abiotic stress. We assessed two treatments of JA and BA, T1 (500 mg·kg-1 + 500 mg·kg -1 ) and T 2 (2000 mg·kg -1 + 2000 mg·kg -1), as well as a control test using an experimental design of randomized blocks with four replications. The results obtained for kg·m -2, fruits/m², kg/plant and fruits/plant did not show statistically significant differences. However, we obtained statistically sig nificant differences in the average fruit weight co mpared with the control test in the two experiments carried out in 2009 and 2010. The results showed that there was no metabolic cost in the plants when applying the assessed treatments of JA and BA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Moderate somatic stress inhibits gastric acid secretion. We have investigated the role of endogenously released NO in this phenomenon. Elevation of body temperature by 3°C or a reduction of 35 mmHg (1 mmHg = 133 Pa) in blood pressure for 10 min produced a rapid and long-lasting reduction of distension-stimulated acid secretion in the rat perfused stomach in vivo. A similar inhibitory effect on acid secretion was produced by the intracisternal (i.c.) administration of oxytocin, a peptide known to be released during stress. Intracisternal administration of the NO-synthase inhibitor, NG-nitro-l-arginine methyl ester (l-NAME) reversed the antisecretory effect induced by all these stimuli, an action prevented by intracisternal coadministration of the NO precursor, l-arginine. Furthermore, microinjection of l-NAME into the dorsal motor nucleus of the vagus nerve reversed the acid inhibitory effects of mild hyperthermia, i.v. endotoxin, or i.c. oxytocin, an action prevented by prior microinjection of l-arginine. By contrast, microinjection of l-NAME into the nucleus tractus solitarius failed to affect the inhibitory effects of hyperthermia, i.v. endotoxin, or i.c. oxytocin. Immunohistochemical techniques demonstrated that following hyperthermia there was a significant increase in immunoreactivity to neuronal NO synthase in different areas of the brain, including the dorsal motor nucleus of the vagus. Thus, our results suggest that the inhibition of gastric acid secretion, a defense mechanism during stress, is mediated by a nervous reflex involving a neuronal pathway that includes NO synthesis in the brain, specifically in the dorsal motor nucleus of the vagus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GSK3/shaggy-like genes encode kinases that are involved in a variety of biological processes. By functional complementation of the yeast calcineurin mutant strain DHT22-1a with a NaCl stress-sensitive phenotype, we isolated the Arabidopsis cDNA AtGSK1, which encodes a GSK3/shaggy-like protein kinase. AtGSK1 rescued the yeast calcineurin mutant cells from the effects of high NaCl. Also, the AtGSK1 gene turned on the transcription of the NaCl stress-inducible PMR2A gene in the calcineurin mutant cells under NaCl stress. To further define the role of AtGSK1 in the yeast cells we introduced a deletion mutation at the MCK1 gene, a yeast homolog of GSK3, and examined the phenotype of the mutant. The mck1 mutant exhibited a NaCl stress-sensitive phenotype that was rescued by AtGSK1. Also, constitutive expression of MCK1 complemented the NaCl-sensitive phenotype of the calcineurin mutants. Therefore, these results suggest that Mck1p is involved in the NaCl stress signaling in yeast and that AtGSK1 may functionally replace Mck1p in the NaCl stress response in the calcineurin mutant. To investigate the biological function of AtGSK1 in Arabidopsis we examined the expression of AtGSK1. Northern-blot analysis revealed that the expression is differentially regulated in various tissues with a high level expression in flower tissues. In addition, the AtGSK1 expression was induced by NaCl and exogenously applied ABA but not by KCl. Taken together, these results suggest that AtGSK1 is involved in the osmotic stress response in Arabidopsis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L-ascorbic acid (vitamin C) is a powerful reducing agent found in millimolar concentrations in plants, and is proposed to play an important role in scavenging free radicals in plants and animals. However, surprisingly little is known about the role of this antioxidant in plant environmental stress adaptation or ascorbate biosynthesis. We report the isolation of soz1, a semi-dominant ozone-sensitive mutant that accumulates only 30% of the normal ascorbate concentration. The results of genetic approaches and feeding studies show that the ascorbate concentration affects foliar resistance to the oxidizing gas ozone. Consistent with the proposed role for ascorbate in reactive oxygen species detoxification, lipid peroxides are elevated in soz1, but not in wild type following ozone fumigation. We show that the soz1 mutant is hypersensitive to both sulfur dioxide and ultraviolet B irradiation, thus implicating ascorbate in defense against varied environmental stresses. In addition to defining the first ascorbate deficient mutant in plants, these results indicate that screening for ozone-sensitive mutants is a powerful method for identifying physiologically important antioxidant mechanisms and signal transduction pathways. Analysis of soz1 should lead to more information about the physiological roles and metabolism of ascorbate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Jasmonic acid (JA) is a naturally occurring growth regulator found in higher plants. Several physiological roles have been described for this compound (or a related compound, methyl jasmonate) during plant development and in response to biotic and abiotic stress. To accurately determine JA levels in plant tissue, we have synthesized JA containing 13C for use as an internal standard with an isotopic composition of [225]:[224] 0.98:0.02 compared with [225]:[224] 0.15:0.85 for natural material. GC analysis (flame ionization detection and MS) indicate that the internal standard is composed of 92% 2-(+/-)-[13C]JA and 8% 2-(+/-)-7-iso-[13C]JA. In soybean plants, JA levels were highest in young leaves, flowers, and fruit (highest in the pericarp). In soybean seeds and seedlings, JA levels were highest in the youngest organs including the hypocotyl hook, plumule, and 12-h axis. In soybean leaves that had been dehydrated to cause a 15% decrease in fresh weight, JA levels increased approximately 5-fold within 2 h and declined to approximately control levels by 4 h. In contrast, a lag time of 1-2 h occurred before abscisic acid accumulation reached a maximum. These results will be discussed in the context of multiple pathways for JA biosynthesis and the role of JA in plant development and responses to environmental signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims Alpha-lipoic acid (ALA) is a thiol compound with antioxidant properties used in the treatment of diabetic polyneuropathy. ALA may also improve arterial function, but there have been scant human trials examining this notion. This project aimed to investigate the effects of oral and intra-arterial ALA on changes in systemic and regional haemodynamics, respectively. Methods In study 1, 16 healthy older men aged 58 +/- 7 years (mean +/- SD) received 600 mg of ALA or placebo, on two occasions 1 week apart, in a randomized cross-over design. Repeated measures of peripheral and central haemodynamics were then obtained for 90 min. Central blood pressure and indices of arterial stiffness [augmentation index (AIx) and estimated aortic pulse wave velocity] were recorded non-invasively using pulse wave analysis. Blood samples obtained pre- and post-treatments were analysed for erythrocyte antioxidant enzyme activity, plasma nitrite and malondialdehyde. In study 2 the effects of incremental cumulative doses (0.5, 1.0, 1.5 and 2.0 mg ml(-1) min(-1)) of intra-arterial ALA on forearm blood flow (FBF) were assessed in eight healthy subjects (aged 31 +/- 5 years) by conventional venous occlusion plethysmography. Results There were no significant changes on any of the central or peripheral haemodynamic measures after either oral or direct arterial administration of ALA. Plasma ALA was detected after oral supplementation (95% confidence intervals 463, 761 ng ml(-1)), but did not alter cellular or plasma measures of oxidative stress. Conclusions Neither oral nor intra-arterial ALA had any effect on regional and systemic haemodynamics or measures of oxidative stress in healthy men.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have previously tested the effects of high dose AA supplements on human volunteers in terms of reducing DNA damage, as a possible mechanism of the vitamin’s proposed protective effect against cancer and detected a transient, pro-oxidant effect at high doses (500 mg/day). Herein, we present evidence of a pro-oxidant effect of the vitamin when added to CCRF cells at extracellular concentrations which mimic those present in human serum in vivo (50–150AM). The activation of the transcription factor AP-1 was optimal at 100 AM AA following 3h exposure at 37jC. A minimum dose of 50 AM of AA activated NFnB but there appeared to be no dose-dependent effect. Increases of 2–3 fold were observed for both transcription factors when cells were exposed to 100 AM AA for 3h, comparing well with the pro-oxidant effect of H2O2 at similar concentrations. In parallel experiments the activation of AP-1 (binding to DNA) was potentiated when cells were pre-incubated with AA prior to exposure with H2O2. Cycloheximide pretreatment (10 Ag/ml for 15min) caused a 50% inhibition of AP-1 binding to DNA suggesting that it was due to a combination of increasing the binding of pre-existing Fos and Jun and an increase in their de novo synthesis. Cellular localisation was confirmed by immunocytochemistry using antibodies specific for c-Fos and c-Jun proteins. These results suggest that extracellular AA can elicit an intracellular stress response resulting in the activation of the oxidative stress-responsive transcription factors AP-1 and NFnB. These transcription factors are involved in the induction of genes associated with an oxidative stress response, cell cycle arrest and DNA repair confirmed by our cDNA microarray analysis (Affymetrix). This may explain the abilty for AA to appear to inhibit 8-oxodG, yet simultaneously generate another oxidative stress biomarker, 8-oxo-dA. These results suggest a completely novel DNA repair action for AA. Whether this action is relevant to our in vivo findings will be the subject of our future research.