991 resultados para ABSORPTION-SPECTRUM
Resumo:
在同成分LiTaO3熔体中掺入一定剂量的K2O,采用顶部籽晶提拉法生长掺镁近化学计量比LiTaO3晶体。对晶体分别进行光谱分析,畴结构和抗光损伤阈值的测定。结果表明:与同成分掺镁LiTaO3晶体相比较,其紫外吸收边出现明显蓝移,红外吸收峰变弱。腐蚀晶片的晶相显微镜观察结果表明:掺镁近化学剂量比晶体的畴结构是较为规则的六边形;晶体的抗光致散射能力明显提高。
Resumo:
Tris-thenoyltrifluroacetonate of Nd3+ has been prepared and dissolved in DMF solation with very high concentration, and the contained hydrogen has not been substituted by deuterium. The absorption spectrum, emission spectrum, and fluorescence lifetime of the solution were measured. Very obvious characteristic fluorescence peaks were observed at 898 and 1058 nm. Based on Judd-Ofelt theory, three intensity parameters were obtained: Omega(2) = 4.9 x 10(-20) cm(2), Omega(4) = 5.1 x 10(-20) cm(2) and Omega(6) = 2.5 x 10(-20) cm(2). Line strengths S-cal, oscillator strengths f(cal), radiative transition probabilities A(ed), radiative lifetimes tau(r) and branch ratios beta were calculated too. The measured lifetime tau of 1058 nm peak is 460 mu s, and that of 898 nm 505 mu s. Comparison between theoretically computed radiative lifetime tau(r)(682 mu s) and the measured lifetime indicates that the non-radiative transition probability of the solution is very low and the fluorescence quantum efficiency very high. High values of three intensity parameters prove the high asymmetric surroundings of Nd3+, which is important for Nd3+ to absorb the excitation energy. Spectropic quality factor Omega(4)/Omega(6) > 1 makes radiation at 898 nm stronger than at 1058 nm.
Resumo:
Riboflavin is employed as the photosensitizer of a novel photopolyrner material for holographic recording, This material has a broad absorption spectrum range (More than 200nm) due to the addition of this dye. The experimental results show that our material has high diffraction efficiency and large refractive index modulation. The maximum diffraction efficiency of the photopolymer is about 56%. The digital data pages are stored in this medium and the reconstructed data page has a good fidelity, with the bit-error-ratio of about 1.8 X 10(-4). it is found that the photopolymer material is suitable for high-density volume holographic digital storage.
Resumo:
采用溶液析出法,合成了以2-(2′-羟基-5′-甲基苯基)苯并三唑(HMPB)为配体的多氮杂环金属配合物M(HMPB)2(M=Co,Ni),利用元素分析、激光解析飞行时间质谱等进行了表征,并研究了新配合物的红外特征光谱和紫外-可见电子吸收光谱。结果表明:HMPB配体通过N和O原子与中心金属以二齿形式配位,中心金属的配位数为4;配合物红外特征吸收谱带位于400~2 500 cm^-1,形成金属配合物后,2-(2′-羟基-5′-甲基苯基)苯并三唑的羟基的伸缩振动吸收、CN振动峰和C─O特征吸收有明显改变,同时确定了配位键M─N和M─O的特征峰位置;配合物在紫外区有强吸收,其最大吸收峰位于335~345 nm。
Resumo:
Cr~(2+):ZnSe具有很宽的吸收带和发射带,是中红外波段优秀的可调谐激光材料。从吸收光谱、发射光谱以及角度调谐输出对Cr~(2+):ZnSe晶体的激光输出性能进行了研究。采用真空高温扩散法制备Cr~(2+):ZnSe晶体.获得了高浓度的Cr~(2+)离子掺杂的厚1.7 mm,直径10 mm的薄片ZnSe晶体。使用中心波长2.05μm,最大输出功率8 W的Tm离子掺杂的光纤激光器抽运,使用平凹腔结构搭建谐振腔,获得了最大平均功率1.034 W,中心波长2.367μm,线宽10 nm的连续激光输出。利用角度调谐的方法,对Cr:ZnSe晶体的调谐性能进行了研究,在100 nm范围内获得了调谐输出。
Resumo:
在摩尔分数组成x(BaO),r(Ga2O),r(GeO2)为0.20,0.15,0.65的玻璃中,分别以摩尔分数0.05,0.10.0.15和0.20的BaF2替代BaO,研究了氟化物对玻璃折射率和光吸收性质的影响。结果表明,在玻璃中加入氟化物.玻璃折射率和色散降低,玻璃的紫外吸收边向短波侧迁移,而红外吸收边无明显变化。不含氟化物的氧化物玻璃中含有大量的OH基.这些OH基在2.24μm、2.97μm和4.23μm附近引起光吸收.在含氟化物的玻璃中,2.24μm的吸收峰消失,而2.97μm和4.23μm附近
Resumo:
研究了一种新型掺Er^3+碲酸盐玻璃的光谱性质;应用Judd-Ofelt理论计算了碲酸盐玻璃中Er^3+离子的强度参数Ω(Ω2=4.79×10^-20cm^2,Ω4=1.52×10^-20cm^2,Ω6=0.66×10^-20cm^2),计算了离子的自发跃迁概率,荧光分支比;应用McCumber理论计算了Er^3+的受激发射截面(σe=10.40×10^-21cm^2),Er^3+离子^4I13/2→^4I15/2发射谱的荧光半高宽(FWHM=65.5nm)及各能级的荧光寿命(^4I13/2能级为τrad
Resumo:
Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.
Stability against crystallization and spectroscopic properties of Tm3+ doped fluorophosphate glasses
Resumo:
Fluorophosphate glasses with various content of Al(PO3)(3) were prepared. With the increment of Al(PO3)(3) content, density decreases while refractive index increases, and transition temperature, crystallization peak temperature and melt temperature increase which were suggested by differential scanning calorimetry. These glasses exhibit the best stability against crystallization with 7-9 mol'Yo Al(PO3)(3) content. Normalized Raman spectra were used to analyze structure and phonon state. The increment of Al(PO3)(3) content does not affect phonon energy but results in the augment of phonon density. Absorption spectra were measured. H-3(6) -> F-3(4) transition exhibits absorption at L band of the third communication window. Compared with the energy of Tm3+ excited states in other glass system, F-3(4) energy of Tm3+ in these glasses is considerable higher and H-3(4) energy is considerable lower, and it can be predicted that emission band of H-3(4) -> F-3(4) transition is close to the amplified band of gain-shift Tm3+ doped fiber amplifier. Analyses of Judd-Ofelt theory suggest when Al(PO3)(3) content is no more than 7 mol%, Judd-Ofelt parameters Omega(t) and the lifetime of H-3(4) energy level of TM3+ vary little with the increment of Al(PO3)(3) content, and when Al(PO3)(3) content is more than 7 mol%, Omega(2) and Omega(6) increase and radiative lifetime of H-3(4) energy level of Tm3+ drops sharply with the increment of Al(PO3)(3) content. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The thermal stability, 2 μm fluorescence properties and energy transfer mechanism in Ho3+ doped fluorophosphate glass sensitized by Yb3+ and Tm3+ were investigated. The characteristic temperatures, absorption spectrum and fluorescence spectrum of the glass sample were measured. ΔT calculated from the characteristic temperatures shows that the thermal stability of fluorophosphate glass is better than fluoride glass. According to the absorption spectrum, several spectroscopic parameters of the glass sample, such as Judd-Ofelt parameters and spontaneous transition probability were calculated and compared with other glass hosts. The largest spontaneous transition probability for Ho3+:5 I
Resumo:
Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.
Resumo:
Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Omega(t)(t = 2, 4, 6) were found to be Omega(2) = 3.27 x 10(-20) cm(2), Omega(4) = 1.15 x 10(-20) cm(2), and Omega(6) = 0.38 x 10(-20) cm(2). The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log I-up vs log I-IR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.
Resumo:
Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 tellurite glass system was prepared and their density, characteristic temperatures and optical properties were determined and investigated. For the TeO2-BaO-La2O3-Er2O3 system, composition with 10 mol% BaO presented the highest thermal stability and good infrared transmittance. Intense and broad 1.53 mu m infrared fluorescence were observed under 977 nm diode laser excitation and the most full width at half-maximum (FWHM) is similar to 60nm. According to absorption spectrum, we calculated the optical parameters by means of Judd-Ofelt and McCumber theory such as the fluorescence lifetimes which are about 2.72-3.25 ms and the maximum emission cross-sections which are similar to 1.0pm(2) at 1.531 mu m. The sigma(e) x FWHM value of composition with 10 mol% BaO for gain bandwidth is similar to 600 exceeding those in silicon and phosphate glasses. Our results indicated this kind of tellurite glasses could be used as an ideal host glass for optical amplifier. (c) 2005 Elsevier B.V. All rights reserved.