892 resultados para 770408 Rehabilitation of degraded coastal and estuarine areas
Resumo:
A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "
Resumo:
What Are ~umulat iveE ffects? Coastal managers now recognize that many of the most serious resource degradation problems have built up gradually as the combined outcome of numerous actions and choices which alone may have had relatively minor impacts. For example, alteration of essential habitat through wetland loss, degradation of water quality from nonpoint source pollution, and changes in salinity of estuarine waters from water diversion projects can be attributed to numerous small actions and choices. These incremental losses have broad spatial and temporal dimensions, resulting in the gradual alteration of structure and functioning of biophysical systems. In the environmental management field, the term "cumulative effects" is generally used to describe this phenomenon of changes in the environment that result from numerous, small-scale alterations.
Resumo:
Grass shrimp, Palaemonetes pugio, are a common inhabitant of US East and Gulf coast salt marshes and are a food source for recreationally and economically important fish and crustacean species. Due to the relationship of grass shrimp with their ecosystem, any significant changes in grass shrimp population may have the potential to affect the estuarine system. Land use is a crucial concern in coastal areas where increasing development impacts the surrounding estuaries and salt marshes and has made grass shrimp population studies a logical choice to investigate urbanization effects. Any impact on tidal creeks will be an impact on grass shrimp populations and their associated micro-environment whether predator, prey or parasitic symbiont. Anthropogenic stressors introduced into the grass shrimp ecosystem may even change the intensity of infections from parasitic symbionts. An ectoparasite found on P. pugio is the bopyrid isopod Probopyrus pandalicola. Little is known about factors that may affect the occurrence of this isopod in grass shrimp populations. The goal was to analyze the prevalence of P. pandalicola in grass shrimp in relation to land use classifications, water quality parameters, and grass shrimp population metrics. Eight tidal creeks in coastal South Carolina were sampled monthly over a three year period. The occurrence of P. pandalicola ranged from 1.2% to 5.7%. Analysis indicated that greater percent water and marsh coverage resulted in a higher incidence of bopyrid occurrence. Analysis also indicated that higher bopyrid incidence occurred in creeks with higher salinity, temperature, and pH but lower dissolved oxygen. The land use characteristics found to limit bopyrid incidence were limiting to grass shrimp (definitive host) populations and probably copepod (intermediate host) populations as well.
Resumo:
Young-of-year (YOY) blue-fish (Pomatomus saltatrix) along the U.S. east coast are often assumed to use estuaries almost exclusively during the summer. Here we present data from 1995 to 1998 indicating that YOY (30–260 mm FL) also use ocean habitats along the coast of New Jersey. An analysis of historical and recent data on northern and southern ocean beaches (0.1–2 m) and the inner continental shelf (5–27 m) during extensive sampling in New Jersey waters from 1995 to 1998 indicated that multiple cohorts occurred (June–August) in every year. When comparable collections of YOY were made in the ocean and in an adjacent estuary, the abundance was 1–2 orders of magnitude greater on ocean beaches during the summer. The YOY were even more abundant in ocean habitats in the fall (September–October), presumably as a result of YOY leaving estuaries to join the coastal migration south. During 1999 and 2000, YOY bluefish were tagged with internal sequential coded wire microtags in order to refine our under-standing of habitat use and movement. Few (0.04%) of the fish tagged on ocean beaches were recaptured; however, 2.2% of the fish tagged in the estuary were recaptured from 2 to 27 days after tagging. Recaptured fish grew quickly (average 1.37 mm FL/d). On ocean beaches YOY fed on a variety of invertebrates and fishes but their diet changed with size. By approximately 80–100 mm FL, they were piscivorous and fed primarily on engraulids, a pattern similar to that reported in estuaries. Based on distribution, abundance, and feeding, both spring- and summer-spawned cohorts of YOY bluefish commonly use ocean habitats. Therefore, attempts to determine factors affecting recruitment success based solely on estuarine sampling may be inadequate and further examination, especially of the contribution of the summer-spawned cohort in ocean habitats, appears warranted.
Resumo:
This paper records the results of the Chanos fry surveys carried out in Mannar, Puttalam and Negombo lagoon areas since 1967, and gives a summary of the earlier surveys. The maximum amount of Chanos fry was obtained from Mannar area during April and May. All three areas have their main commercial fry season in April and May with a second commercially negligible season in October–November. The quantity of fry collected has been utilized to evaluate the potential fry production figures. Mannar 400,000,000 fry/annum. Puttalam 200,000,000 fry/annum. It would be extremely difficult to estimate the number of eggs laid, the larvae hatched and the fry available each year along the coastal areas of Ceylon. It is necessary to obtain biological, meteorological and oceanographical data so as to provide a basis for the prediction and estimation of fry populations in the coastal waters of Ceylon. The suggested ideal season for commercial catches of Chanos fry is April–May with operations to be carried out simultaneously all along the west coast.
Resumo:
The distribution of dissolved organic nitrogen (DON) and nitrate were determined seasonally (winter, spring and summer) during three years along line P, i.e. an E-W transect from the coast of British Columbia, Canada, to Station P (50degreesN, 145degreesW) in the subarctic North East Pacific Ocean. In conjunction, DON measurements were made in the Straits of Juan de Fuca and Georgia within an estuarine system connected to the NE Pacific Ocean. The distribution of DON at the surface showed higher values of 4-17 muM in the Straits relative to values of 4-10 muM encountered along line P, respectively. Along line P, the concentration of DON showed an inshore-offshore gradient at the surface with higher values near the coast. The equation for the conservation of DON showed that horizontal transport of DON (inshore-offshore) was much larger than vertical physical mixing. Horizontal advection of DON-rich waters from the coastal estuarine system to the NE Pacific Ocean was likely the cause of the inshore-offshore gradient in the concentration of DON. Although the concentration of DON was very variable in space and time, it increased from winter to summer, with an average build up of 4.3 muM in the Straits and 0.7 muM in the NE subarctic Pacific. This implied seasonal DON sources of 0.3 mmol N m(-2) d(-1) at Station P and 1.5 mmol N m(-2) d(-1) in the Straits, respectively. These seasonal DON accumulation rates corresponded to about 15-20% of the seasonal nitrate uptake and suggested that there was a small seasonal build up of labile DON at the surface. However, the long residence times of 180-1560 d indicated that the most of the DON pool in surface waters was refractory in two very different productivity regimes of the NE Pacific. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity
Resumo:
© 2015 Elsevier Ltd.Sedimentological, ichnological and paleontological analyses of the Early Miocene uppermost Monte León Formation and the lower part of the Santa Cruz Formation were carried out in Rincón del Buque (RDB), a fossiliferous locality north of Río Coyle in Santa Cruz Province, Patagonia, Argentina. This locality is of special importance because it contains the basal contact between the Monte Léon (MLF) and the Santa Cruz (SCF) formations and because it preserves a rich fossil assemblage of marine invertebrates and marine trace fossils, and terrestrial vertebrates and plants, which has not been extensively studied. A ~90m-thick section of the MLF and the SCF that crops out at RDB was selected for this study. Eleven facies associations (FA) are described, which are, from base to top: subtidal-intertidal deposits with Crassotrea orbignyi and bioturbation of the Skolithos-Cruziana ichnofacies (FA1); tidal creek deposits with terrestrial fossil mammals and Ophiomorpha isp. burrows (FA2); tidal flat deposits with Glossifungites ichnofacies (FA3); deposits of tidal channels (FA4) and tidal sand flats (FA5) both with and impoverish Skolithos ichnofacies associated; marsh deposits (FA6); tidal point bar deposits recording a depauperate mixture of both the Skolithos and Cruziana ichnofacies (FA7); fluvial channel deposits (FA8); fluvial point bar deposits (FA9); floodplain deposits (FA10); and pyroclastic and volcaniclastic deposits of the floodplain where terrestrial fossil mammal remains occur (FA11).The transition of the MLF-SCF at RDB reflects a changing depositional environment from the outer part of an estuary (FA1) through the central (FA2-6) to inner part of a tide-dominated estuary (FA7). Finally a fluvial system occurs with single channels of relatively low energy and low sinuosity enclosed by a broad, low-energy floodplain dominated by partially edaphized ash-fall, sheet-flood, and overbank deposits (FA8-11). Pyroclastic and volcaniclastic materials throughout the succession must have been deposited as ash-fall distal facies in a fluvial setting and also were carried by fluvial streams and redeposited in both estuarine and fluvial settings. These materials preserve most of the analyzed terrestrial fossil mammals that characterize the Santacrucian age of the RDB's succession. Episodic sedimentation under volcanic influence, high sedimentation rates and a relatively warm and seasonal climate are inferred for the MLF and SCF section.Lateral continuity of the marker horizons at RDB serve for correlation with other coastal localities such as the lower part of the coastal SCF south of Río Coyle (~17.6-17.4Ma) belonging to the Estancia La Costa Member of the SCF.
Resumo:
Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl a based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed.
Resumo:
Mammillaria gaumeri (Britton & Ross) Orcutt (Cactaceae), an endemic plant of the Yucatan Peninsula, is included by the Mexican government in the list of species that require special protection. Its natural habitat is now restricted to fragmented areas and protection programs involve botanical gardens in growing individuals rescued from disturbed areas. Little information is available on the reproductive characteristics of this species and nothing is known of its pollinators. We investigated the visitors of M. gaumeri flowers, collecting and observing bee species in its natural habitat (i.e., coastal dune) and in a botanical garden, where coastal dune vegetation had been created. Observations were made on plants whose density was artificially increased by grouping flowering individuals. At each site, we: 1) collected insects visiting the flowers; 2) recorded number of visits; and 3) video-recorded bee movements on the flowers. As expected, the number of bee species and visitation frequency were higher at the botanical garden than at the coastal dune. After landing on a flower, bees either inspected the anthers or dived among them. These behaviors, carried out by all observed species, seemed related to the state of the anthers (full or empty of pollen) and stigma lobes (opened or closed). Specifically, visits lasted longer when anthers were full of pollen and stigma lobes were opened. The same bee species recorded on the dune were also recorded at the botanical garden, suggesting that the artificial dune at the botanical garden offered suitable conditions for the natural pollinators of this endangered cactus.
Resumo:
The Antrim Coast Road stretching from the seaport of Larne in the East of Northern Ireland has a well-deserved reputation for being one of the most spectacular roads in Europe (Day, 2006). However the problematic geology; Jurassic Lias Clay and Triassic Mudstone overlain by Cretaceous Limestone and Tertiary Basalt, and environmental variables result in frequent instances of slope instability manifested in both shallow debris flows and occasional massive rotational movements, creating a geotechnical risk to this highway. This paper describes how a variety of techniques are being used to both assess instability and monitor movement of these active slopes near one site at Straidkilly Point, Glenarm. An in-depth understanding of the geology was obtained via boreholes, resistivity surveys and laboratory testing. Environmental variables recorded by an on-site weather station were correlated with measured pore water pressure and soil moisture infiltration data. Terrestrial LiDAR (TLS), with surveys carried out on a bi-monthly basis allowed for the generation of Digital Elevation Models (DEMs) of difference, highlighting areas of recent movement, accumulation and depletion. Morphology parameters were generated from the DEMs and include slope, curvature and multiple measures of roughness. Changes in the structure of the slope coupled with morphological parameters were characterised and linked to progressive failures from the temporal monitoring. In addition to TLS monitoring, Aerial LiDAR datasets were used for the spatio-morphological characterisation of the slope on a macro scale. A Differential Global Positioning System (dGPS) was also deployed on site to provide a real-time warning system for gross movements, which were also correlated with environmental conditions. Frequent electrical resistivity tomography (ERT) surveys were also implemented to provide a better understanding of long-term changes in soil moisture and help to define the complex geology. The paper describes how the data obtained via a diverse range of methods has been combined to facilitate a more informed management regime of geotechnical risk by the Northern Ireland Roads Service.
Resumo:
The study of the Portuguese Hydrozoa fauna has been abandoned for more than half a century, except for the Azores archipelago. One of the main aims of this Ph.D. project was to contribute new hydrozoan records leading to a more accurate perception of the actual hydrozoan diversity found in Portuguese waters, including the archipelagos of Azores and Madeira, and neighbouring geographical areas, for habitats ranging from the deep sea to the intertidal. Shallow water hydroids from several Portuguese marine regions (including the Gorringe Bank) were sampled by scuba-diving. Deep-water hydroids, from the Azores, Madeira, Gulf of Cadiz and Alboran Sea, were collected by researchers of different institutions during several oceanographic campaigns. Occasional hydroid sampling by scuba-diving was performed in the UK, Malta and Spain. Over 300 hydroid species were identified and about 600 sequences of the hydrozoan ‘DNA barcode’ 16S mRNA were generated. The families Sertulariidae, Plumulariidae, Lafoeidae, Hebellidae, Aglaopheniidae, Campanulinidae, Halopterididae, Kirchenpaueriidae, Haleciidae and Eudendriidae, were studied in greater detail. About 350 16S sequences were generated for these taxa, allowing phylogenetic, phylogeographic and evolutionary inferences, and also more accurate taxonomic identifications. Phylogenetic analyses integrated molecular and morphological characters. Subsequent results revealed: particularly high levels of cryptic biodiversity, polyphyly in many taxonomic groups, pairs of species that were synonymous, the identity of several varieties as valid species, and highlighted phylogeographic associations of hydroids in deep and shallow-water areas of the NE Atlantic and W Mediterranean. It was proved that many (but not all) marine hydroid species with supposedly widespread vertical and/or horizontal geographical distributions, correspond in fact to complexes of cryptic taxa. This study further revealed that, in the NE Atlantic, shallow environments sustain higher hydrozoan diversity and abundance, but the importance of bathyal habitats as a source of phylogenetic diversity was also revealed. The Azorean seamounts were shown to be particularly important in the segregation of populations of hydroids with reduced dispersive potential. The bathyal habitats of the Gulf of Cadiz proved to harbour a considerably high number of cryptic species, which may mainly be a consequence of habitat heterogeneity and convergence of various water masses in the Gulf. The main causes proposed for speciation and population divergence of hydroids were: species population size, dispersal mechanisms and plasticity to inhabit different environmental conditions, but also the influence of oceanic currents (and its properties), habitat heterogeneity, climate change and continental drift. Higher phylogenetic resolution obtained for the family Plumulariidae revealed particularly that glacial cycles likely facilitated population divergence, ultimately speciation, and also faunal evolutionary transitions from deep to shallow waters.