969 resultados para 5-HT RECEPTORS
Resumo:
The beta-adrenergic blocker and 5-HT(1A) receptor antagonist pindolol has been combined with selective serotonin reuptake inhibitors (SSRIs) in patients with depressive and anxiety disorders to shorten the onset of the clinical action and/or increase the proportion of responders. The results of a previous study have shown that pindolol potentiates the panicolytic effect of paroxetine in rats submitted to the elevated T-maze (ETM). Since reported evidence has implicated the 5-HT(1A) receptors of the dorsal periaqueductal gray matter (DPAG) in the panicolytic effect of antidepressants, rats treated with pindolol (5.0 mg/kg, i.p.) and paroxetine (1.5 mg/kg, i.p.) received a previous intra-DPAG injection of the selective 5-HT(1A) antagonist, WAY-100635 (0.4 mu g) and were submitted to the ETM. Pretreatment with WAY-100635 reversed the increase in escape latency, a panicolytic effect, determined by the pindolol-paroxetine combination. These results implicate the 5-HT(1A) receptors of the DPAG in the panicolytic effect of the pindolol-paroxetine combination administered systemically. They also give further preclinical support for the use of this drug combination in the treatment of panic disorder. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta 12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(ATP)(+)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(ATP)(+) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan`s Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K(ATP)(+) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Activation of 5-HT2C receptors in limbic structures such as the amygdala and hippocampus increases anxiety. Indirect evidence obtained with non-selective 5-HT2C-interacting drugs suggests that the same may occur in the dPAG, a brainstem region consistently implicated in the genesis/regulation of panic attacks. In this study we used more selective agonists and antagonists to unveil the role played by dPAG 5-HT2C receptors in the regulation of anxiety- and panic-related defensive behaviors. Our results showed that intra-dPAG microinjection of the endogenous agonist 5-HT (20 nmol) or the 5-HT2C receptor agonists MK-212 (1 and 10 nmol) and RO-600175 (40 nmol) significantly increased inhibitory avoidance acquisition in rats tested in the elevated T-maze, suggesting an anxiogenic effect. 5-HT, but not the two 5-HT2C receptor agonists, inhibited escape performance. In the elevated T-maze, inhibitory avoidance and escape responses have been related to generalized anxiety and panic attacks, respectively. The behavioral effects caused by 5-HT and MK-212 were fully blocked by previous local microinjection of the 5-HT2C receptor antagonist SB-242084. Intra-dPAG injection of MK-212 also failed to affect escape expression in another test relating this behavior to panic, the electrical stimulation of the dPAG. Overall, the results indicate that 5-HT2C receptors in the dPAG are preferentially involved in the regulation of defensive behaviors related to anxiety, but not panic. This finding extends to the dPAG the prominent role that has been attributed to 5-HT2C receptors in anxiety generation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Pulmonary hypertension is associated with various alterations in 5-hydroxytryptamine (5-HT) physiology. In this study in platelets from hypoxic pulmonary hypertensive rats (10% O-2; 1 week) and normoxic rats (room air), (i) initial rates of specific [H-3]5-HT uptake were measured and (ii) potentiation of collagen- and ADP-induced aggregation by 5-HT was quantified. The platelet count was almost halved in hypoxic rats. In uptake experiments, there was a decrease in 5-HT uptake in platelets from hypoxic compared with normoxic rats, due to a 36% reduction in the maximal initial rate of uptake. The aggregation experiments showed that 5-HT (1-100 muM) increased the magnitude of responses to collagen and the duration of responses to ADP, but there was no difference between hypoxic and normoxic rats. Abnormalities in platelet function may conceivably lead to increases in plasma 5-HT levels in hypoxic pulmonary hypertension, but are unlikely to aggravate pulmonary thromboembolism. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Sequential stages in the life cycle of the ionotropic 5-HT(3) receptor (5-HT(3)R) were resolved temporally and spatially in live cells by multicolor fluorescence confocal microscopy. The insertion of the enhanced cyan fluorescent protein into the large intracellular loop delivered a fluorescent 5-HT(3)R fully functional in terms of ligand binding specificity and channel activity, which allowed for the first time a complete real-time visualization and documentation of intracellular biogenesis, membrane targeting, and ligand-mediated internalization of a receptor belonging to the ligand-gated ion channel superfamily. Fluorescence signals of newly expressed receptors were detectable in the endoplasmic reticulum about 3 h after transfection onset. At this stage receptor subunits assembled to form active ligand binding sites as demonstrated in situ by binding of a fluorescent 5-HT(3)R-specific antagonist. After novel protein synthesis was chemically blocked, the 5-HT(3) R populations in the endoplasmic reticulum and Golgi cisternae moved virtually quantitatively to the cell surface, indicating efficient receptor folding and assembly. Intracellular 5-HT(3) receptors were trafficking in vesicle-like structures along microtubules to the cell surface at a velocity generally below 1 mum/s and were inserted into the plasma membrane in a characteristic cluster distribution overlapping with actin-rich domains. Internalization of cell surface 5-HT(3) receptors was observed within minutes after exposure to an extracellular agonist. Our orchestrated use of spectrally distinguishable fluorescent labels for the receptor, its cognate ligand, and specific organelle markers can be regarded as a general approach allowing subcellular insights into dynamic processes of membrane receptor trafficking.
Resumo:
Addictive properties of drugs of misuse are generally considered to be mediated by an increased release of dopamine (DA) in the ventral striatum. However, recent experiments indicated an implication of alpha1b-adrenergic receptors in behavioural responses to psychostimulants and opiates. We show now that DA release induced in the ventral striatum by morphine (20 mg/kg) is completely blocked by prazosin (1 mg/kg), an alpha1-adrenergic antagonist. However, morphine-induced increases in DA release in the ventral striatum were found to be similar in mice deleted for the alpha1b-adrenergic receptor (alpha1b-AR KO) and in wild-type (WT) mice, suggesting the presence of a compensatory mechanism. This acute morphine-evoked DA release was completely blocked in alpha1b-AR KO mice by SR46349B (1 mg/kg), a 5-HT2A antagonist. SR46349B also completely blocked, in alpha1b-AR KO mice, the locomotor response and the development of behavioural sensitization to morphine (20 mg/kg) and D-amphetamine (2 mg/kg). Accordingly, the concomitant blockade of 5-HT2A and alpha1b-adrenergic receptors in WT mice entirely blocked acute locomotor responses but also the development of behavioural sensitization to morphine, D-amphetamine or cocaine (10 mg/kg). We observed, nevertheless, that inhibitory effects of each antagonist on locomotor responses to morphine or D-amphetamine were more than additive (160%) in naïve WT mice but not in those sensitized to either drug. Because of these latter data and the possible compensation by 5-HT2A receptors for the genetic deletion of alpha1b-adrenergic receptors, we postulate the existence of a functional link between these receptors, which vanishes during the development of behavioural sensitization.
Resumo:
The role of dopamine and serotonin in spinal pain regulation is well established. However, little is known concerning the role of brain dopamine and serotonin in the perception of pain in humans. The aim of this study was to assess the potential role of brain dopamine and serotonin in determining experimental pain sensitivity in humans using positron emission tomography (PET) and psychophysical methods. A total of 39 healthy subjects participated in the study, and PET imaging was performed to assess brain dopamine D2/D3 and serotonin 5-HT1A receptor availability. In a separate session, sensitivity to pain and touch was assessed with traditional psychophysical methods, allowing the evaluation of potential associations between D2/D3 and 5-HT1A binding and psychophysical responses. The subjects’ responses were also analyzed according to Signal Detection Theory, which enables separate assessment of the subject’s discriminative capacity (sensory factor) and response criterion (non-sensory factor). The study found that the D2/D3 receptor binding in the right putamen was inversely correlated with pain threshold and response criterion. 5-HT1A binding in cingulate cortex, inferior temporal gyrus and medial prefrontal cortex was inversely correlated with discriminative capacity for touch. Additionally, the response criterion for pain and intensity rating of suprathreshold pain were inversely correlated with 5-HT1A binding in multiple brain areas. The results suggest that brain D2/D3 receptors and 5-HT1A receptors modulate sensitivity to pain and that the pain modulatory effects may, at least partly, be attributed to influences on the response criterion. 5-HT1A receptors are also involved in the regulation of touch by having an effect on discriminative capacity.
Resumo:
We studied the effects of ethanol on the levels of norepinephrine, dopamine, serotonin (5-HT) and their metabolites as well as on D1- and D2-like receptors in the rat striatum. Ethanol (2 or 4 g/kg, po) was administered daily by gavage to male Wistar rats and on the 7th day, 30 min or 48 h after drug administration, the striatum was dissected for biochemical assays. Monoamine and metabolite concentrations were measured by HPLC and D1- and D2-like receptor densities were determined by binding assays. Scatchard analyses showed decreases of 30 and 43%, respectively, in D1- and D2-like receptor densities and no change in dissociation constants (Kd) 48 h after the withdrawal of the dose of 4 g/kg. Ethanol, 2 g/kg, was effective only on the density of D2-like receptors but not on Kd of either receptor. Thirty minutes after the last ethanol injection (4 g/kg), decreases of D2 receptor density (45%) as well as of Kd values (34%) were detected. However, there was no significant effect on D1-like receptor density and a 46% decrease was observed in Kd. An increase in dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), a decrease in norepinephrine, and no alteration in 5-HT levels were demonstrated after 48-h withdrawal of 4 g/kg ethanol. Similar effects were observed in dopamine and DOPAC levels 30 min after drug administration. No alteration in norepinephrine concentration and a decrease in 5-HT levels were seen 30 min after ethanol (4 g/kg) administration. Our findings indicate the involvement of the monoaminergic system in the responses to ethanol.
Resumo:
We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.
Resumo:
Les actions thérapeutiques des antidépresseurs, disponibles actuellement, requièrent plusieurs semaines de traitement. Ce délai est dû aux adaptations des sites pré et post-synaptiques qui, respectivement, augmentent la disponibilité synaptique des monoamines sérotonine et noradrénaline (5-HT et NA), et entraînent les changements neuroplastiques modifiant la fonction neuronales dans les régions limbiques. Il a été récemment observé, chez un modèle animal de dépression, que l’agoniste RS67333 des récepteurs sérotoninergiques de type 5-HT4 produisait des changements comportementaux, électrophysiologiques, cellulaires et biochimiques, tel qu’observé chez les antidépresseurs. Ces changements apparaissent seulement après 3 jours de traitement tandis que les antidépresseurs nécessitent souvent plusieurs semaines. De plus, l’activation des récepteurs 5-HT4 ne générait pas de tolérance, et cela pendant 21 jours de traitement. Seulement, les propriétés de signalisation et de régulation de ces récepteurs sont très loin d’êtres établies. Nous avons alors voulu mieux caractériser ces deux aspects de leur fonction, en se concentrant d’avantage sur les isoformes a et b, fortement exprimés dans le système limbique. Pour cela, nous avons voulu évaluer d’abord leur capacité de production d’AMPc dans un système hétérologue. Les essais d’accumulation d’AMPc démontrent que les deux isoformes sont capables de moduler positivement et négativement des niveaux d’AMPc en présence de 5-HT. Par contre, la stimulation au RS67333 induit seulement une augmentation du niveau d’AMPc dans les deux cas. Ensemble, ces observations indiquent que les deux isoformes sont capables de coupler à l’adénylate cyclase à travers les protéines Gαs et Gαi. La quantification des récepteurs internalisés a montré que l’isoforme b internalisait plus efficacement que l’isoforme a suite à l’incubation à la 5-HT (61 ± 3 % pour le b vs 40 ± 2 % pour le a). Les protéines kinases PKA et PKC n’étaient pas impliquées dans cette différence, toutefois, la PKC a été trouvée essentielle à l’internalisation des deux isoformes. L’internalisation de l’isoforme b par 5-HT n’a pas été affecté par la surexpression de forme inactive de GRK2 (GRK2- K220R) et a été partiellement inhibé par un mutant négative de la β-arrestine (βarr(319-418)), tandis que l’internalisation de l’isoforme a a été bloquée par les deux. Ces observations indiquent que les mécanismes d’internalisation des deux isoformes du récepteur 5-HT4 les plus abondants dans le système nerveux central sont distincts. Des comportements spécifiques à chaque isoforme ont aussi été constatés au niveau de la régulation fonctionnelle suite à l’exposition au RS67333, qui désensibilise seulement l’isoforme b. D’après nos observations, nous avons conclu que les isoformes a et b diffèrent dans leur propriétés de signalisation et de régulation. L’incapacité du RS67333 à désensibiliser l’isoforme a fournit un substrat moléculaire pour les effets antidépressifs prolongés de cet agoniste dans les études pré-cliniques.
Resumo:
Les antidépresseurs actuels sont très similaires au niveau de leur mécanisme d’action et sont plus ou moins efficaces. Un des problèmes majeurs est leur long temps de latence à fournir une action thérapeutique dû aux adaptations des sites pré et post synaptiques. Dans un modèle animal, nous avons récemment découvert que l’agoniste RS67333 des récepteurs 5-HT4 était en mesure de produire en trois jours les mêmes effets antidépresseurs qui normalement prennent de deux à trois semaines à apparaître avec les antidépresseurs actuellement disponibles. De plus, nous avons constaté que les effets antidépresseurs de cet agoniste possédaient une résistance à la tolérance. Il y a d’autres agonistes du même récepteur, tel que le prucalopride qui ne produit pas d’effets antidépresseurs comme RS67333. Étant donné que l’efficacité du Prucalopride à stimuler les 5-HT4Rs est similaire sinon plus grande que celle de RS67333, nous avons énoncé l’hypothèse que le récepteur 5-HT4 pourrait adopter différentes conformations actives suite à son activation par différents agonistes. Nous avons ainsi décidé d’explorer les principales réponses fonctionnelles des récepteurs 5-HT4B en observant leurs propriétés de régulation et de signalisation. Nous avons montré que l’isoforme B du récepteur 5-HT4, étant hautement exprimé dans le système limbique, détient une signalisation et une régulation différentes dépendant du ligand activateur. Nos résultats indiquent que chacun des agonistes testés (5-HT, RS67333, ML10302, Zacopride, Prucalopride) modulent distinctivement la production d’AMPc et l’internalisation du récepteur. Les résultats nous ont clairement permis de déterminer que les agonistes possèdent une efficacité et ou puissance différentes les uns par rapport aux autres. De plus, l’ordre d’efficacité des agonistes à moduler la voie de l’AMPc était (Prucalopride > Zacopride = ML10302 = 5-HT > RS67333) et est différente de leur ordre d’efficacité à induire la régulation du récepteur par internalisation (5-HT > Zacopride > Prucalopride > ML10302 = RS67333). Ainsi, nous avons montré que les 5-HT4Rs adoptent des conformations qui sont ligand-spécifiques. Cela implique que la sélectivité fonctionnelle serait un facteur important à considérer dans les mécanismes d’action antidépresseur des agonistes de ce récepteur.
Resumo:
The work is an attempt to understand the role of 5-HT, 5-HT1A and 5-HT2C receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain serotonergic changes associated with hapatocyte proliferation and apoptosis to delineate its regulatory function. The investigation of mechanisms involving different models of hepatocyte proliferation contributes to our knowledge about serotonergic regulation of cell growth, apoptosis and carcinogenesis of liver. The study reveals that the alteration of the 5-HT1A and 5-HT2C receptor function and gene expression in the brain stem, cerebral cortex and hypothalamus play an important role in the sympathetic regulation of cell proliferation, neoplastic transformation and apoptosis. The functional balance between 5-HT1A and 5-HT2C receptor plays an important role in regulating hepatocyte proliferation, neoplastic transformation and hepatic apoptosis. The regulatory role of 5-HT1A and 5-HT2C receptor during neoplastic transformation and apoptosis could lead to possible therapeutic intervention in the treatment of cancers and have immense clinical importance.
Resumo:
Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.
Resumo:
The present study describes that acetylcholine through muscarinic Ml and M3 receptors play an important role in the brain function during diabetes as a function of age. Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic function, decreased in the brain regions - the cerebral cortex, brainstem and corpus striatum of old rats compared to young rats. in diabetic condition, it was increased in both young and old rats in cerebral cortex, and corpus striatum while in brainstem it was decreased. The functional changes in the muscarinic receptors were studied in the brain regions and it showed that muscarinic M I receptors of old rats were down regulated in cerebral cortex while in corpus striatum and brainstem it was up regulated. Muscarinic M3 receptors of old rats showed no significant change in cerebral cortex while in corpus striatum and brainstem muscarinic receptors were down regulated. During diabetes, muscarinic M I receptors were down regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were up regulated. In old rats, M I receptors were up regulated in cerebral cortex, corpus striatum and in brainstem they were down regulated. Muscarinic M3 receptors were up regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were down regulated. In old rats, muscarinic M l receptors were up regulated in cerebral cortex, corpus striatum and brainstem. In insulin treated diabetic rats the activity of the receptors were reversed to near control. Pancreatic muscarinic M3 receptor activity increased in the pancreas of both young and old rats during diabetes. In vitro studies using carbachol and antagonists for muscarinic Ml and M3 receptor subtypes confirmed the specific receptor mediated neurotransmitter changes during diabetes. Calcium imaging studies revealed muscarinic M I mediated Ca2 + release from the pancreatic islet cells of young and old rats. Electrophysiological studies using EEG recording in young and old rats showed a brain activity difference during diabetes. Long term low dose STH and INS treated rat brain tissues were used for gene expression of muscarinic Ml, M3, glutamate NMDARl, mGlu-5,alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors to observe the neurotransmitter receptor functional interrelationship for integrating memory, cognition and rejuvenating brain functions in young and old. Studies on neurotransmitter receptor interaction pathways and gene expression regulation by second messengers like IP3 and cGMP in turn will lead to the development of therapeutic agents to manage diabetes and brain activity.From this study it is suggested that functional improvement of muscarinic Ml, M3, glutamate NMDAR1, mGlu-5, alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors mediated through IP3 and cGMP will lead to therapeutic applications in the management of diabetes. Also, our results from long term low dose STH and INS treatment showed rejuvenation of the brain function which has clinical significance in maintaining healthy period of life as a function of age.
Resumo:
Neuronal dopamine and serotonin receptors are widely distributed in the central and the peripheral nervous systems at different levels. Dopaminergic and serotonergic systems have crucial role in aldehyde dehydrogenase regulation Stimulation of autonomic nervous system during ethanol treatment is suggested to be an important factor in regulating the ALDH function. The ALDH enzyme activity was increased in plasma, cerebral cortex, and liver but decreased in cerebellum. The ALDH enzyme affinity was decreased in plasma, brainstem and liver and increased in cerebral cortex and cerebellum. Dopamine and serotonin content decreased in liver and brain regions - cerebral cortex, corpus striatum of ethanol treated rats with an increased HVA/DA, 5-HIAA/5-HT tumover rate. Dopamine content decreased in brainstem with an increased HVA/DA turnover rate and serotonin content decreased with an increased 5-HIAA/5-HT turnover rate in the brainstem of ethanol treated rats compared to control. Serotonin content increased in hypothalamus with a decreased 5-HIAA/5—HT turnover rate where as dopamine content decreased in hypothalamus with an increased HVA/DA tumover rate of ethanol treated rats compared to control.alterations of DA D2 and 5-HTQA receptor function and gene expression in the cerebellum, hypothalamus, corpus striatum, cerebral cortex play an important role in the sympathetic regulation of ALDH enzyme in ethanol addiction. There is a serotonergic and dopaminergic functional regulation of ALDH activity in the brain regions and liver of ethanol treated rats. Gene expression studies of DA D2 and 5'HT2A studies confirm these observations. Perfusion studies using DA, 5-HT and glucose showed ALDH regulatory function. Brain activity measeurement using EEG showed a prominentfrontal brain wave difference. This will have immense clinical significance in the management of ethanol addiction.