950 resultados para 3D Video Telecommunication Multimedia
Resumo:
The time consuming and labour intensive task of identifying individuals in surveillance video is often challenged by poor resolution and the sheer volume of stored video. Faces or identifying marks such as tattoos are often too coarse for direct matching by machine or human vision. Object tracking and super-resolution can then be combined to facilitate the automated detection and enhancement of areas of interest. The object tracking process enables the automatic detection of people of interest, greatly reducing the amount of data for super-resolution. Smaller regions such as faces can also be tracked. A number of instances of such regions can then be utilized to obtain a super-resolved version for matching. Performance improvement from super-resolution is demonstrated using a face verification task. It is shown that there is a consistent improvement of approximately 7% in verification accuracy, using both Eigenface and Elastic Bunch Graph Matching approaches for automatic face verification, starting from faces with an eye to eye distance of 14 pixels. Visual improvement in image fidelity from super-resolved images over low-resolution and interpolated images is demonstrated on a small database. Current research and future directions in this area are also summarized.
Resumo:
As multimedia-enabled mobile devices such as smart phones and tablets are becoming the day-to-day computing device of choice for users of all ages, everyone expects that all mobile multimedia applications and services should be as smooth and as high-quality as the desktop experience. The grand challenge in delivering multimedia to mobile devices using the Internet is to ensure the quality of experience that meets the users' expectations, within reasonable costs, while supporting heterogeneous platforms and wireless network conditions. This book aims to provide a holistic overview of the current and future technologies used for delivering high-quality mobile multimedia applications, while focusing on user experience as the key requirement. The book opens with a section dealing with the challenges in mobile video delivery as one of the most bandwidth-intensive media that requires smooth streaming and a user-centric strategy to ensure quality of experience. The second section addresses this challenge by introducing some important concepts for future mobile multimedia coding and the network technologies to deliver quality services. The last section combines the user and technology perspectives by demonstrating how user experience can be measured using case studies on urban community interfaces and Internet telephones.
Resumo:
Effective streaming of video can be achieved by providing more bits to the most important region in the frame at the cost of reduced bits in the less important regions. This strategy can be beneficial for delivering high quality videos in mobile devices, especially when the availability of bandwidth is usually low and limited. While the state-of-the-art video codecs such as H.264 may have been optimised for perceived quality, it is hypothesised that users will give more attention to interesting region/object when watching videos. Therefore, giving a higher quality to region of interest (ROI)while reducing quality of other areas may result in improving the overall perceived quality without necessarily increasing the bitrate. In this paper, the impact of ROI-based encoded video on perceived quality is investigated by conducting a user study for varous target bitrates. The results from the user study demonstrate that ROI-based video coding has superior perceived quality compared to normal encoded video at the same bitrate in the lower bitrate range.
Resumo:
Topographic structural complexity of a reef is highly correlated to coral growth rates, coral cover and overall levels of biodiversity, and is therefore integral in determining ecological processes. Modeling these processes commonly includes measures of rugosity obtained from a wide range of different survey techniques that often fail to capture rugosity at different spatial scales. Here we show that accurate estimates of rugosity can be obtained from video footage captured using underwater video cameras (i.e., monocular video). To demonstrate the accuracy of our method, we compared the results to in situ measurements of a 2m x 20m area of forereef from Glovers Reef atoll in Belize. Sequential pairs of images were used to compute fine scale bathymetric reconstructions of the reef substrate from which precise measurements of rugosity and reef topographic structural complexity can be derived across multiple spatial scales. To achieve accurate bathymetric reconstructions from uncalibrated monocular video, the position of the camera for each image in the video sequence and the intrinsic parameters (e.g., focal length) must be computed simultaneously. We show that these parameters can be often determined when the data exhibits parallax-type motion, and that rugosity and reef complexity can be accurately computed from existing video sequences taken from any type of underwater camera from any reef habitat or location. This technique provides an infinite array of possibilities for future coral reef research by providing a cost-effective and automated method of determining structural complexity and rugosity in both new and historical video surveys of coral reefs.
Resumo:
A video detailing our new virtual world BPMN process modelling tool developed by Erik Poppe. Enables better situational awareness via use of remotely connected avatars and a shared 3D process diagram.
Resumo:
Video detailing three process model visualisation configurations integrated into an agent driven virtual world simulation.
Resumo:
Video presented as part of AMCIS 2010 conference in Lima Peru. New improved collaborative BPMN editor video, showing a new interface and collaboration capabilities via remote login of another avatar.
Resumo:
Video presented as part of ACIS 2009 conference in Melbourne Australia. This video outlines a collaborative BPMN editing system, developed by Stephen West, an IT Research Masters student at QUT, Brisbane, Australia. The editor uses a number of tools to facilitate collaborative process modelling, including a presentation wall, to view text descriptions of business processes, and a tile-based BPMN editor. We will post a video soon focussing on the multi-user capabilities of this editor. For more details see www.bpmve.org.
Resumo:
Video presented as part of ACIS 2009 conference in Melbourne Australia. This movie is a demonstration of the use of 3D Virtual Environments to visualise 3D BPMN Process Models, and in particular, to highlight any issues with the process model that are spatial in nature. This work is part of a paper accepted for the Asia-Pacific Conference on Conceptual Modelling (APCCM 2010) to be held in Brisbane - http://2010.apccm.org/
Resumo:
In this paper, we present an unsupervised graph cut based object segmentation method using 3D information provided by Structure from Motion (SFM), called Grab- CutSFM. Rather than focusing on the segmentation problem using a trained model or human intervention, our approach aims to achieve meaningful segmentation autonomously with direct application to vision based robotics. Generally, object (foreground) and background have certain discriminative geometric information in 3D space. By exploring the 3D information from multiple views, our proposed method can segment potential objects correctly and automatically compared to conventional unsupervised segmentation using only 2D visual cues. Experiments with real video data collected from indoor and outdoor environments verify the proposed approach.
Resumo:
In recent years face recognition systems have been applied in various useful applications, such as surveillance, access control, criminal investigations, law enforcement, and others. However face biometric systems can be highly vulnerable to spoofing attacks where an impostor tries to bypass the face recognition system using a photo or video sequence. In this paper a novel liveness detection method, based on the 3D structure of the face, is proposed. Processing the 3D curvature of the acquired data, the proposed approach allows a biometric system to distinguish a real face from a photo, increasing the overall performance of the system and reducing its vulnerability. In order to test the real capability of the methodology a 3D face database has been collected simulating spoofing attacks, therefore using photographs instead of real faces. The experimental results show the effectiveness of the proposed approach.
Resumo:
Mobile video, as an emerging market and a promising research field, has attracted much attention from both industry and researchers. Considering the quality of user-experience as the crux of mobile video services, this chapter aims to provide a guide to user-centered studies of mobile video quality. This will benefit future research in better understanding user needs and experiences, designing effective research, and providing solid solutions to improve the quality of mobile video. This chapter is organized in three main parts: (1) a review of recent user studies from the perspectives of research focuses, user study methods, and data analysis methods; (2) an example of conducting a user study of mobile video research, together with the discussion on a series of relative issues, such as participants, materials and devices, study procedure, and analysis results, and; (3) a conclusion with an open discussion about challenges and opportunities in mobile video related research, and associated potential future improvements.
Resumo:
Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.
Resumo:
Quality of experience (QoE) measures the overall perceived quality of mobile video delivery from subjective user experience and objective system performance. Current QoE computing models have two main limitations: 1) insufficient consideration of the factors influencing QoE, and; 2) limited studies on QoE models for acceptability prediction. In this paper, a set of novel acceptability-based QoE models, denoted as A-QoE, is proposed based on the results of comprehensive user studies on subjective quality acceptance assessments. The models are able to predict users’ acceptability and pleasantness in various mobile video usage scenarios. Statistical regression analysis has been used to build the models with a group of influencing factors as independent predictors, including encoding parameters and bitrate, video content characteristics, and mobile device display resolution. The performance of the proposed A-QoE models has been compared with three well-known objective Video Quality Assessment metrics: PSNR, SSIM and VQM. The proposed A-QoE models have high prediction accuracy and usage flexibility. Future user-centred mobile video delivery systems can benefit from applying the proposed QoE-based management to optimize video coding and quality delivery decisions.
Resumo:
The ability to measure surface temperature and represent it on a metrically accurate 3D model has proven applications in many areas such as medical imaging, building energy auditing, and search and rescue. A system is proposed that enables this task to be performed with a handheld sensor, and for the first time with results able to be visualized and analyzed in real-time. A device comprising a thermal-infrared camera and range sensor is calibrated geometrically and used for data capture. The device is localized using a combination of ICP and video-based pose estimation from the thermal-infrared video footage which is shown to reduce the occurrence of failure modes. Furthermore, the problem of misregistration which can introduce severe distortions in assigned surface temperatures is avoided through the use of a risk-averse neighborhood weighting mechanism. Results demonstrate that the system is more stable and accurate than previous approaches, and can be used to accurately model complex objects and environments for practical tasks.